Author:
Qiao Xiaorui,Ji Yonghoon,Yamashita Atsushi,Asama Hajime, ,
Abstract
We propose an underwater image enhancement algorithm for improving underwater robot visibility. Images captured in underwater environments are typically degraded by the effects of absorption, scattering, and noise. Degraded images impede underwater robot task performance (e.g., inspection, detection, and visual simultaneous localization and mapping). In this study, we improve the underwater light model by considering floating particle noise and non-uniform illumination from artificial light sources. Specifically, a systematic underwater enhancement method that includes a floating particle removal algorithm and an image-dehazing algorithm is proposed. Our method is effective for underwater image enhancement applications in real-world scenarios. We compare and evaluate our proposed method with state-of-the-art methods, with an underwater evaluation and a feature-matching performance. The experimental results show that our method yields comparable (and even better) results than state-of-the-art methods.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference30 articles.
1. M. Takagi, H. Mori, A. Yimit, Y. Hagihara, and T. Miyoshi, “Development of a Small Size Underwater Robot for Observing Fisheries Resources – Underwater Robot for Assisting Abalone Fishing –,” J. Robot. Mechatron., Vol.28, No.3, pp. 397-403, 2016.
2. Y. Nishida, T. Ura, T. Nakatani, T. Sakamaki, J. Kojima, Y. Itoh, and K. Kim, “Autonomous Underwater Vehicle “Tuna-Sand” for Image Observation of the Seafloor at a Low Altitude,” J. Robot. Mechatron., Vol.26, No.4, pp. 519-521, 2014.
3. M. Jonaz and G. R. Fournier, “Light scattering by particles in water: theoretical and experimental foundations,” Academic Press, 2007.
4. K. He, J. Sun, and X. Tang, “Single Image Haze Removal Using Dark Channel Prior,” IEEE Trans. on Pattern Analysis and Machine Intell., Vol.32, No.12, pp. 2341-2353, 2011.
5. C. O. Ancuti and C. Ancuti, “Single Image Dehazing by Multi-Scale Fusion,” IEEE Trans. on Image Process., Vol.22, No.8, pp. 3271-3282, 2013.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献