Robust Control of Nonlinear System with Input and Output Nonlinear Constraints

Author:

Bi Shuhui,Wang Lei,Han Chunyan, ,

Abstract

With the development of modern technology, actuators and sensors composed of smart materials, such as piezoceramic and magnetostrictive materials, have been widely used in practice owing to their various advantages. However, in the working process of a smart material based actuator and sensor, non-smooth nonlinear constraints in their output responses may induce inaccuracies and oscillations, which severely degrade system performance. Therefore, input and output nonlinear constraints brought about by actuators and sensors should be considered. Generally, the output nonlinear constraint, namely, non-smooth effects from sensors, has been ignored. Therefore, in this paper, a robust control for a system with an output constraint as well as with both input and output constraints will be considered. Firstly, the generalized Prandtl-Ishlinskii (PI) hysteresis model is used for describing the input and output nonlinearities owing to its excellent characteristics, the model has proved suitable in theoretical operator based settings. Further, a robust control for a nonlinear system with an output nonlinear constraint is considered by using operator based robust right coprime factorization approach. Here, operator based robust stability is considered, and the control system structure including feedforward and feedback controllers is presented with a derivation of sufficient conditions for stable controller operation. Based on the proposed conditions, the influence from an output nonlinear constraint is rejected, the systems are robustly stable, and output tracking performance can be realized. Moreover, robust stability and output tracking performance for a nonlinear system with both input and output nonlinear constraints are also analyzed.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3