Improved Synthetic Weighted Algorithm of Ontology-Based Semantic Similarity Computation

Author:

Liu Yuan,Wang Haiquan,Zhang Xiguang, ,

Abstract

To solve the problems of incomplete consideration and low precision in existing domain ontology semantic similarity computation, an improved synthetic weighted algorithm of ontology-based semantic similarity computation is proposed, mixing path coincidence degree, the shortest distance, and concept property methods. First, the depths of lowest common ancestor (LCA) and an ontology tree are added to the formula of path coincidence degree for distinguishing the influence of LCA depth on similarity when multiple inheritances occur. Second, the analysis of similarity algorithm based on the shortest distance cannot distinguish two situations with the same path distance. One is when the density of LCA is different. The other is a depth difference in the concept pair. So, the number of direct subnodes of the LCA and the depth difference are added to the formula of the shortest distance. Meanwhile, the switch of density factor is set to ensure similarity calculation results between [0,1]. Then, a synthetic weighted algorithm of semantic similarity computation is constructed using the weighting path coincidence degree, the shortest distance, and the concept property. Finally, this algorithm and the other three algorithms in the literature are used to calculate semantic similarity in tea ontology. The results show that this algorithm is closest to expert experience.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference18 articles.

1. M. Zhou, Y. Ding, and C. Huang, “Improving translation selection with a new translation model trained by independent monolingual corpora,” Computational Linguistics and Chinese Language Processing, Vol.6, No.1, pp. 1-26, 2001.

2. W. Lu, H. Huang, and H. Wu, “Word sense disambiguation wit graph model based on domain knowledge,” Acta Automatica Sinica, Vol.40, No.12, pp. 2836-2850, 2014.

3. H. Hassan, A. Hassan, and O. Emam, “Unsupervised information extraction approach using graph mutual reinforcement,” Proc. of the 2006 Conf. on Empirical Methods in Natural Language Processing, Stroudsburg PAUSA Association for Computational Linguistics, pp. 501-508, 2006.

4. L. Liao, G. Shen, and Z. Huang, “An approach for ontology cohesion metrics based on directed acyclic graph,” Computer Engineering & Science, Vol.37, No.7, pp. 1297-1303, 2015.

5. P. Resnik, “Using information content to evaluate semantic similarity in a taxonomy,” Proc. of the 14th Int. Joint Conf. on Artificial Intelligence, pp. 448-453, 1995.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3