Long-Term Monitoring for ASR-Deteriorated PC Rigid-Frame Bridge

Author:

Fukada Saiji, ,Ha Minh Tuan,Torii Kazuyuki,Tsuda Makoto,Ura Shuzo,Sasatani Teruhiko, ,

Abstract

Reactive aggregates are widely distributed throughout Japan. In the Noto region, andesite is widespread, which causes alkali-silica reaction (ASR) degradation in concrete structures. For the maintenance of local bridges, it is necessary to observe the expansion trends of cracking caused by ASR in health assessments. In this study, remote long-term monitoring of a four-span prestressed concrete (PC) rigid-frame bridge was performed to investigate the expansion of cracks by ASR. To evaluate the health of this degraded bridge, instead of focusing only on the locations of cracks, it was also necessary to monitor simultaneously the displacement behaviors over time of the bridge and to obtain the crack expansion trends, which could not be identified by regular visual inspections alone. Therefore, long-term monitoring and loading experiments using large vehicles are utilized to reveal the correlation between cracking due to ASR and displacement of the overall structure due to variations of diurnal temperature and the live load. As a result of the loading tests using test trucks, by long-term monitoring of the relationship between the temperature and the crack displacement due to ASR, the expansion trend of the crack due to seasonal variations was obtained. A particularly rapid growth trend from spring to summer was recognized. In addition, the vertical displacement of the Gelber hinge, which could be obtained from the inclination angle using the correlation between the inclination angle and the vertical displacement of the static loading tests, was estimated at approximately 30–40 mm during summer. Moreover, as another conclusion of the study, it was found that changes in diurnal temperature and the displacement behavior of the entire bridge had significant consequences on the types of crack expansion in this bridge.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3