Seismic Hazard Visualization from Big Simulation Data: Cluster Analysis of Long-Period Ground-Motion Simulation Data

Author:

Maeda Takahiro, ,Fujiwara Hiroyuki

Abstract

This paper describes a method of extracting the relation between the ground-motion characteristics of each area and a seismic source model, based on ground-motion simulation data output in planar form for many earthquake scenarios, and the construction of a parallel distributed processing system where this method is implemented. The extraction is realized using two-stage clustering. In the first stage, the ground-motion indices and scenario parameters are used as input data to cluster the earthquake scenarios within each evaluation mesh. In the second stage, the meshes are clustered based on the similarity of earthquake-scenario clustering. Because the mesh clusters can be correlated to the geographical space, it is possible to extract the relation between the ground-motion characteristics of each area and the scenario parameters by examining the relation between the mesh clusters and scenario clusters obtained by the two-stage clustering. The results are displayed visually; they are saved as GeoTIFF image files. The system was applied to the long-period ground-motion simulation data for hypothetical megathrust earthquakes in the Nankai Trough. This confirmed that the relation between the extracted ground-motion characteristics of each area and scenario parameters is in agreement with the results of ground-motion simulations.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3