Agrometeorological Disaster Grading in Guangdong Province Based on Data Mining

Author:

Wang Danni, ,Bao Shitai,Wang Chunlin,Wang Chongyang, , ,

Abstract

This study proposes a mining method for meteorological disaster grade rules from the raw data accumulated by meteorological stations using fuzzy association rules. Rules for grading agrometeorological disasters are created and successfully applied to a map. The intention is to mitigate such disasters by understanding their conditions. The procedure described uses the fuzzy c-means clustering algorithm and the Apriori algorithm to mine fuzzy association rules for high-temperature and flooding agrometeorological disasters in Guangdong province, China. In the proposed method, the clustering algorithm does not depend on the membership functions of domain experts. The results show that effective association rules for agrometeorological disasters can be obtained from meteorological data in the long term, even with a lack of prior knowledge. The rules obtained could be used to forecast the grade and region of such disasters in Guangdong province, thus contributing to agrometeorological disaster monitoring and early warning efforts.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3