Compared Modeling Study of Primary Water Stress Corrosion Cracking at Dissimilar Weld of Alloy 182 of Pressurized Water Nuclear Reactor According to Hydrogen Concentration

Author:

Aly Omar F., ,Neto Miguel M.,Schvartzman Mônica M. A. M.,Lima Luciana I. L., ,

Abstract

One of the main failure mechanisms of pressurized water reactors (PWR) is primary water stress corrosion cracking (PWSCC), which occurs in alloy 600 (75Ni-15Cr-9Fe) and weld metals such as alloy 182 (70Ni-14Cr-9Fe), and alloy 82 (73Ni-19Cr-2Fe). Corrosion cracking is due, for example, in reactor nozzles welded dissimilarly with alloys 182/82 between ASTM A-508 G3 steel and AISI316L stainless steel. Corrosion cracks can cause problems reducing nuclear installations safety and reliability. Hydrogen dissolved into primary water to prevent radiolysis, also may enhance PWSCC growth. This article begins from a study by Lima et al. (2011) based on experimental data from the CDTN-Brazilian Nuclear Technology Development Center, and related to a slow strain rate test (SSRT). This was prepared and used for testing welds in the laboratory, similar to the dissimilar weld in pressurizer relief nozzles operating at the Brazilian Angra Unit 1 nuclear power plant. It was simulated for tests, primary water at 325°C and 12.5 MPa containing four levels of dissolved hydrogen. Our objective in this article is to clarify, and discuss adequate modeling based on the SSRT experimental results, and to compare them with those from another database and modeling, of the PWSCC growth rate based on levels of dissolved hydrogen.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference15 articles.

1. F. Nordmann. “PWR and BWR chemistry optimization,” Nuclear Engineering International Magazine, Global Trade Media, Dec. 2011, pp. 24-29, http://www.neimagazine.com/mboxstoryprint. asp?sc=2061618 [accessed February 2013]

2. C. Marks, M. Dumouchel, and J. Adler, “Materials Reliability Program: Technical Bases for the Chemical Mitigation of Primary Water Stress Corrosion Cracking in Pressurized Water Reactors (MRP-263 NP),” EPRI, Palo Alto, CA, USA, 2012 (1025669).

3. L. I. L. Lima, M. M. A. M. Schvartzman, M. A. D. Quinan, C. A. Figueiredo, and W. R. C. Campos, “Influence of Dissolved Hydrogen on Stress Corrosion Cracking Susceptibility of Nickel Based Weld Alloy, Alloy Steel – Properties and Use,” Dr. Eduardo Valencia Morales (Ed.), ISBN: 978-953-307-484-9, 2011, InTech, available from: http://www.intechopen.com/download/pdf/25315 [accessed May, 2015]

4. N. Totsuka, Y. Nishikawa, Y. Kaneshima, and K. Arioka, “Effect of Strain Rate on Primary Water Stress Corrosion Cracking Fracture Mode and Crack Growth Rate of Nickel Alloy and Austenitic Stainless Steel,” Corrosion Science, Nace International, Vol.61, pp. 219-229, 2005.

5. N. Totsuka, Y. Nishikawa, Y. Kaneshima, and K. Arioka, “The Effect of Strain Rate on PWSCC Fracture Mode of Alloy 600(UNS N06600) and 304 Stainless Steel (UNS S30400),” Corrosion/2003, paper n. 03538, Houston, TX: Nace, 2003.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3