Constituent Mineral and Water-Soluble Components of Volcanic Ash from the 2018 Eruption of Mt. Motoshirane of Kusatsu-Shirane Volcano, Japan

Author:

Yaguchi Muga,Ohba Takeshi,Numanami Nozomi,Kawaguchi Ryohei, ,

Abstract

Constituent minerals and water-soluble components of the volcanic ash discharged from the eruption of Mt. Motoshirane on January 23, 2018, were analyzed to investigate the source environment of this eruption. The ash sample included quartz, plagioclase, cristobalite, pyrite, alunite, kaolinite, and pyrophyllite; its mineral assemblage suggests that a high-temperature acid alteration zone had been formed in the volcanic edifice of Mt. Motoshirane. The presence of pyrophyllite in the ash sample indicates that the explosion of this eruption took place at a depth reaching the basement rocks of Mt. Motoshirane. Further, the adhesion amount of water-soluble components detected from the ash sample is smaller than that in the ashes from the 1982 eruption of Mt. Shirane, indicating that the ash discharge of the 2018 eruption of Mt. Motoshirane took place in a condition in which the degree of involvement of the liquid phase was relatively small.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference15 articles.

1. Geographical Survey Institute of Japan, 2019, https://maps.gsi.go.jp/#14/36.623002/138.545322/&base=std&base_grayscale=1&ls=std%7Chillshademap%2C0.5&blend=1&disp=11&lcd=hillshademap&vs=c1j0h0k0l0u0t0z0r0s0m0f1&d=vl (in Japanese) [accessed April 15, 2019]

2. The Joint Research Team for ash fall in Kusatsu-Shirane 2018 eruption, “Ash fall distribution of Jan. 23, 2018 eruption in Kusatsu-Shirane Volcano,” Report of the Coordinating Committee for Prediction of Volcanic Eruptions, Vol.129, pp. 87-91, 2018 (in Japanese).

3. T. Ohba, J. Hirabayashi, and K. Nogami, “D/H and 18O/16O ratios of water in the crater lake at Kusatsu-Shirane volcano, Japan,” J. Volcanol. Geotherm. Res., Vol.97, No.1-4, pp. 329-346, doi:10.1016/S0377-0273(99)00169-9, 2000.

4. T. Ohba, J. Hirabayashi, and K. Nogami, “Temporal changes in the chemistry of lake water within Yugama Crater, Kusatsu-Shirane Volcano, Japan: Implications for the evolution of the magmatic hydrothermal system,” J. Volcanol. Geotherm. Res., Vol.178, No.2, pp. 131-144, doi:10.1016/j.jvolgeores.2008.06.015, 2008.

5. M. Yaguchi, T. Ohba, and M. Sago, “The Nature and Source of the Volcanic Ash during the 2015 Small Phreatic Eruption at Hakone Volcano, Central Japan,” Geochem. J., Vol.53, pp. 209-217, doi:10.2343/geochemj.2.0560, 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3