Establishing the Advanced Disaster Reduction Management System by Fusion of Real-Time Disaster Simulation and Big Data Assimilation

Author:

Koshimura Shunichi,

Abstract

A project titled “Establishing the advanced disaster reduction management system by fusion of real-time disaster simulation and big data assimilation,” was launched as Core Research for Evolutional Science and Technology (CREST) by the Japan Science and Technology Agency (JST). Intended to save as many lives as possible in future national crises involving earthquake and tsunami disasters, the project works on a disaster mitigation system of the big data era, based on cooperation of large-scale, high-resolution, real-time numerical simulations and assimilation of real-time observation data. The world’s most advanced specialists in disaster simulation, disaster management, mathematical science, and information science work together to create the world’s first analysis platform for real-time simulation and big data that effectively processes, analyzes, and assimilates data obtained through various observations. Based on quantitative data, the platform designs proactive measures and supports disaster operations immediately after disaster occurrence. The project was launched in 2014 and is working on the following issues at present.Sophistication and fusion of simulations and damage prediction models using observational big data: Development of a real-time simulation core system that predicts the time evolution of disaster effect by assimilating of location information, fire information, and building collapse information which are obtained from mobile terminals, satellite images, aerial images, and other new observation data in addition to sensing data obtained by the undersea high-density seismic observation network.Latent structure analysis and major disaster scenario creation based on a huge amount of simulation results: Development of an analysis and extraction method for the latent structure of a huge amount of disaster scenarios generated by simulation, and creation of severe scenarios with minimum “unexpectedness” by controlling disaster scenario explosion (an explosive increase in the number of predicted scenarios).Establishment of an earthquake and tsunami disaster mitigation big data analysis platform: Development of an earthquake and tsunami disaster mitigation big data analysis platform that realizes analyses of a huge number of disaster scenarios and increases in speed of data assimilation, and clarifies the requirements for operation of the platform as a disaster mitigation system.The project was launched in 2014 as a 5-year project. It consists of element technology development and system fusion, feasibility study as a next-generation disaster mitigation system (validation with/without introduction of the developed real-time simulation and big data analysis platform) in the affected areas of the Great East Japan Earthquake, and test operations in affected areas of the Tokyo metropolitan earthquake and the Nankai Trough earthquake.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3