Machine Learning Based Building Damage Mapping from the ALOS-2/PALSAR-2 SAR Imagery: Case Study of 2016 Kumamoto Earthquake

Author:

Bai Yanbing,Adriano Bruno,Mas Erick,Koshimura Shunichi, ,

Abstract

Synthetic Aperture Radar (SAR) remote sensing is a useful tool for mapping earthquake-induced building damage. A series of operational methodologies based on SAR data using either multi-temporal or only post-event SAR images have been developed and used to serve disaster activities. This presents a critical problem: which method is more likely to obtain reliable results and should be adopted for disaster response when both pre- and post-event SAR data are available? To explore this question, this study takes the 2016 Kumamoto earthquake as a case study. ALOS-2/PALSAR-2 SAR images were employed with a machine learning framework to quantitatively compare the performance of building damage mapping using only post-event SAR images and mapping using multi-temporal SAR images. The results show that an overall accuracy of 64.5% was achieved when only post-event SAR images were used, which is 2.3% higher than the overall accuracy when multi-temporal SAR images were used. The estimated building damage ratio for the former and the latter are 29.7% and 31.1%, respectively, which are both close to the building damage ratio obtained from an optical image.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3