Method to Develop Critical Rainfall Conditions for Occurrences of Sediment-Induced Disasters and to Identify Areas Prone to Landslides

Author:

Yamazaki Yusuke, ,Egashira Shinji,Iwami Yoichi,

Abstract

The present study demonstrates a method to specify critical rainfall conditions for the occurrence of a sediment disaster and identify areas prone to landslides using a simulator proposed by the current authors for sediment hazards. The simulator predicts spatial and temporal distributions for surface and subsurface flows, landslides, and debris flow resulting from rainfall events. The method to develop a critical curve for the occurrence of a disaster is proposed using simulated landslide data derived from artificially specified rainfall conditions, past rainfall data, and disaster records. Usually, a rainfall event also constitutes a period without rain, and this method can be used to evaluate the influence of the no-rain period. In addition, we propose a method to classify slopes according to the probability of landslide occurrences on a domain defined by slope gradient versus catchment area, using data on landslides resulting from a specified rainfall amount and intensity. Areas identified as having a high probability of landslide occurrences correspond to the runout mark of landslides and debris flow in August 2014.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference24 articles.

1. JSCE, Disaster report of Northern Kyushu on 2012, JSCE, 2013 (in Japanese).

2. JSCE, Disaster report of Izu Oshima Island on 2013, JSCE, 2014 (in Japanese).

3. Committee on Hydroscience and Hydraulic Engineering, Disaster report of Hiroshima on 2014 august, JSCE, 2015 (in Japanese).

4. K. Senoo and M. Funazaki, “Sediment disasters due to debris flow and amount of rainfall,” J. of the Japan Society of Erosion Control Engineering, Vol.26, pp. 22-28, 1973 (in Japanese).

5. K. Ashida, T. Takahashi, and K. Sawai, “Evaluation of risk due to the debris flows,” Disaster Prevention Research Institute Annals, Vol.21, B-2, pp. 423-439, 1978.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3