Significance of Electromagnetic Surveys at Active Volcanoes: Toward Evaluating the Imminence of Wet Eruptions
-
Published:2019-06-01
Issue:4
Volume:14
Page:580-591
-
ISSN:1883-8030
-
Container-title:Journal of Disaster Research
-
language:en
-
Short-container-title:J. Disaster Res.
Author:
Hashimoto Takeshi,Kanda Wataru,Morita Yuichi,Hayakawa Midori,Tanaka Ryo,Aoyama Hiroshi,Uyeshima Makoto, , ,
Abstract
The detection capability of various anomalous phenomena preceding volcanic eruptions has considerably progressed as the geophysical monitoring networks have become denser and multi-disciplinary. However, current eruption forecasting techniques, from a practical perspective, still have much scope for improvement because they largely depend on empirical techniques. In the past decade, three-dimensional modeling based on the electromagnetic sounding methods such as magnetotellurics (MT) have become a practical choice, and its recent applications to active volcanic fields has revealed certain common features among volcanoes. Information about the resistivity structure, especially in ‘wet’ volcanic fields, is useful for the provisional screening of the eruption potential from the viewpoint of the subsurface structure, and, thus, may contribute to the evaluation of eruption imminence in a broad sense. In this study, for evaluation purposes, we present the roles and possible further applications of the subsurface resistivity structure studies by demonstrating the preliminary results and interpretations of an MT survey that we performed in the Kuttara Volcanic Group, northern Japan.
Publisher
Fuji Technology Press Ltd.
Subject
Engineering (miscellaneous),Safety, Risk, Reliability and Quality
Reference55 articles.
1. T. Ui, M. Nakagawa, C. Inaba, M. Yoshimoto, and Geological Party, Joint Research Group for the Usu 2000 Eruption, “Sequence of the 2000 Eruption, Usu Volcano,” Bull. Volcanol. Soc. J., Vol.47, No.3, pp. 105-117, doi:10.18940/kazan.47.3_105, 2001 (in Japanese with English abstract). 2. M. Ukawa, E. Fujita, Y. Okada, and M. Kikuchi, “The 2000 Miyakejima eruption: Crustal Deformation and Earthquakes Observed by the NIED Miyakejima Observation Network,” Earth Planets Space, Vol.52, No.8, pp. xix-xxvi, doi:10.1186/BF03351659, 2000. 3. M. Iguchi, H. Yakiwara, T. Tameguri, M. Hendrasto, and J. Hirabayashi, “Mechanism of Explosive Eruption Revealed by Geophysical Observations at the Sakurajima, Suwanosejima and Semeru Volcanoes,” J. Volcanol. Geotherm. Res., Vol.178, pp. 1-9, doi:10.1016/j.jvolgeores.2007.10.010, 2008. 4. K. Mannen, Y. Yukutake, G. Kikugawa, M. Harada, K. Itadera, and J. Takenaka, “Chronology of the 2015 Eruption of Hakone Volcano, Japan: Geological Background, Mechanism of Volcanic Unrest and Disaster Mitigation Measures During the Crisis,” Earth Planets Space, Vol.70, Article No.68, doi:10.1186/s40623-018-0844-2, 2018. 5. K. Tsukamoto, K. Aizawa, K. Chiba, W. Kanda, M. Uyeshima, T. Koyama, M. Utsugi, K. Seki, and T. Kishita, “Three-dimensional Resistivity Structure of Iwo-yama Volcano, Kirishima Volcanic Complex, Japan: Relationship to Shallow Seismicity, Surface Uplift, and a Small Phreatic Eruption,” Geophys. Res. Lett., Vol.45, pp. 12821-12828, doi:10.1029/2018GL080202, 2018.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|