Extraction of Collapsed Buildings in the 2016 Kumamoto Earthquake Using Multi-Temporal PALSAR-2 Data

Author:

Liu Wen, ,Yamazaki Fumio

Abstract

An earthquake (Mw6.2) struck Kumamoto Prefecture, Japan on April 14, 2016. A larger event (Mw7.0) struck the same area 28 hours later, on April 16. The series of earthquakes caused significant damage to buildings and infrastructures. Remote sensing is an effective tool to grasp damage situation over wide areas after a disaster strikes. In this study, two sets of ALOS-2 PALSAR-2 images taken before and after the earthquake were used to extract the areas with collapsed buildings. Three representative change indices, the co-event coherence, the ratio between the co- and pre-event coherence, and the z-factor combining the difference and correlation coefficients, were adopted to extract the collapsed buildings in the central district of Mashiki Town, the most severely affected area. The results of a building-by-building damage survey in the target area were used to investigate the most suitable threshold value for each index. The extracted results were evaluated by comparing them with the reference data from field surveys. Finally, the most valid factor was applied to larger affected areas for Kumamoto City and its surroundings.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference23 articles.

1. United States Geological Survey (USGS): https://earthquake.usgs.gov/earthquakes/eventpage/us20005iis#executive [accessed March 10, 2017]

2. Cabinet Office of Japan (2016) Summary of damage situation in the Kumamoto earthquake sequence, http://www.bousai.go.jp/ updates/h280414jishin/index.html [in Japanese, accessed March 10, 2017]

3. QuiQuake: https://gbank.gsj.jp/QuiQuake/index.en.html [accessed March 10, 2017]

4. Japan Meteorological Agency (JMA): http://www.jma.go.jp /jma/en/2016_Kumamoto_ Earthquake/2016_Kumamoto_Earthquake .html [in Japanese, accessed March 10, 2017]

5. L. Dong and J. Shan, “A comprehensive review of earthquake-induced building damage detection with remote sensing techniques,” ISPRS J. Photogramm. Remote Sens., Vol.84, pp. 85-99, 2013.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3