Bridge Slab Damage Detection by Signal Processing of UHF-Band Ground Penetrating Radar Data

Author:

Mizutani Tsukasa, ,Nakamura Nagisa,Yamaguchi Takahiro,Tarumi Minoru,Ando Yusuke,Hara Ikuo,

Abstract

Maintenance costs for infrastructure, such as bridges, have been increasing particularly in the developed countries. Bridge slabs are important parts of bridges; however, the evaluation of their structural conditions requires significant manpower and time because dense hammering tests have to be conducted as part of the present inspection methods. To overcome this difficulty, a non-contact inspection technique using a radar is focused in this research. Radar techniques are typically utilized in the fields of mine-search, oil-source search, and geographical archeology. However, these searches are conducted by only visually checking reflected-wave images, and thus, the evaluation strongly depends on the abilities and expertise of the inspectors. To more effectively utilize these radar techniques for evaluating a bridge slab condition, analysis of the reflected wave signals should be made automatic, fast, and objective because the number of bridges to be inspected is large. In this research, to detect the damages on a slab, some signal processing techniques for measuring the reflected wave signal by a UHF-band fast scanning and non-contact radar are proposed, and their validity is shown by applying them to the signals obtained from full-scale bridge slab models in which certain ideal damages are embedded.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference12 articles.

1. Kensetsugyou Shinkou Web Magazine, http://www.shinko-web.jp/economic/000673.html [in Japanese, accessed Jan. 6, 2017]

2. Office of the Assistant Secretary and Technology Bureau of Transportation Statistics: National Transportation Statistics Table 1-28: Condition of U.S. Highway Bridges, http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_28.html [accessed Jan. 6, 2017]

3. K. Maser and W. Roddis, “Principles of Thermography and Radar for Bridge Deck Assessment,” J. of Transportation Engineering, Vol.116, No.5, pp. 583-601, 1990.

4. D. M. McCann and M. C. Forde, “Review of NDT methods in the assessment of concrete and masonry structures,” NDT&E Int., Vol.34, pp. 71-84, 2001.

5. P. Chang and S. Liu, “Recent Research in Nondestructive Evaluation of Civil Infrastructures,” J. of Materials in Civil Engineering, Vol.15, No.3, pp. 298-304, 2003.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3