Performance-Based Tsunami Engineering via a Web-Based GIS Data Explorer

Author:

Keon Dylan, ,Pancake Cherri M.,Steinberg Ben,Yeh Harry, , ,

Abstract

In spite of advances in numerical modeling and computer power, coastal buildings and infrastructures are still designed and evaluated for tsunami hazards based on parametric criteria with engineering “conservatism,” largely because complex numerical simulations require time and resources in order to obtain adequate results with sufficient resolution. This is especially challenging when conducting multiple scenarios across a variety of probabilistic occurrences of tsunamis. Numerical computations that have high temporal and spatial resolution also yield extremely large datasets, which are necessary for quantifying uncertainties associated with tsunami hazard evaluation. Here, we introduce a new web-based tool, the Data Explorer, which facilitates the exploration and extraction of numerical tsunami simulation data. The underlying concepts are not new, but the Data Explorer is unique in its ability to retrieve time series data from massive output datasets in less than a second, the fact that it runs in a standard web browser, and its user-centric approach. To demonstrate the tool’s performance and utility, two examples of hypothetical cases are presented. Its usability, together with essentially instantaneous retrieval of data, makes simulation-based analysis and subsequent quantification of uncertainties accessible, enabling a path to future design decisions based on science, rather than relying solely on expert judgment.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference30 articles.

1. H. Yeh, S. Sato, and Y. Tajima, “The 11 March 2011 East Japan Earthquake and Tsunami: Tsunami Effects on Coastal Infrastructure and Buildings,” Pure Appl. Geophys., Vol.170, pp. 1019-1031, 2013.

2. F. Kato, Y. Suwa, K. Watanabe, and S. Hatogai, “Damages to Shore Protection Facilities Induced by the Great East Japan Earthquake Tsunami,” J. of Disaster Research, Vol.8, No.4, pp. 612-625, 2013.

3. Building Research Institute, “Quick Report of the Field Survey and Research on “The 2011 off the Pacific coast of Tohoku Earthquake” (the Great East Japan Earthquake)” Technical Note, National Institute fro Land and Infrastructure Management, No.636, 2011.

4. K. Konagai, T. Kiyota, and H. Kyokawa, “Piles for RC/Steel-frame buildings pulled up by tsunami at Onagawa Town, in the March 11th2011 East Japan Earthquake,” Quick Report of Recon. No.2 Konagai/Kiyota Laboratories, IIS, University of Tokyo, Vol.9, 2011.

5. K. Hayashi, S. Tamura, M. Nakashima, Y. L. Chung, and K. Hoki, “Evaluation of Tsunami Load and Building Damage Mechanism Observation in the 2011 off Pacific Coast of Tohoku Earthquake,” 15thWorld Conference on Earthquake Engineering, Paper ID 1807, Sep., 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3