Introducing Quantile Mapping to a Regression Model Using a Multi-Model Ensemble to Improve Probabilistic Projections of Monthly Precipitation

Author:

Ishizaki Noriko N.,Dairaku Koji,Ueno Genta, ,

Abstract

A new method was proposed for the probabilistic projection of future climate that introduced quantile mapping to a regression method using a multi-model ensemble (QM_RMME). Results of this method were then compared with those of the traditional regression method (RMME). Six stations in Japan where 100 year observation records were available were used to evaluate the performance of the methods. An initial 50-year period (1901–1950) was used to develop the regression models and the final period (1951–2000) was used for evaluation. Results showed that the estimation errors at the 50th and 90th percentile were smaller for QM_RMME as compared to RMME at most sites. Conversely, when the model development and evaluation periods were limited to 20 years (1901–1920 and 1951–1970, respectively), the 90th percentile error was larger for QM_RMME. This was attributed to quantile mapping resulting in over-fitting of the data during the model development period. Furthermore, the QM_RMME error increased when the difference of observations between the model development and verification periods was large. Therefore, results indicated that the RMME method was more stable for relatively short data verification periods.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3