Gaps Between the Transmission and Reception of Information on Rainfall Amounts

Author:

Shimazaki Kan, ,Nakajima Hiroko,Sakai Naoki,Miyajima Akiko

Abstract

In weather forecasts, the intensity of rainfall is often expressed either as a quantitative value – the amount of rainfall per hour – or using qualitative language such as “heavy rain.” To date, however, there has been no research into the extent of rainfall that is assumed by information receivers when presented with these qualitative terms. Thus, the present study examines the correspondence between rainfall evaluation and expressions using a rainfall generator. The large-scale rainfall experiment facility owned by the National Research Institute for Earth Science and Disaster Resilience was used to generate rainfall of 60, 180, and 300 mm h-1, and 21 experiment participants experienced this rainfall without knowing the rainfall amounts. Following this, the participants were asked to give feedback using a scale that correlated numerical expressions of rainfall amounts per hour with 10 language expressions such as “heavy rain” and “downpour.” The results revealed that rainfall rates of 60, 180, and 300 mm h-1 were evaluated by the participants as 135, 223, and 311 mm h-1, respectively. The 10 language expressions were felt to be stronger than the official criteria outlined by the Japan Meteorological Agency. In addition, there was no statistical significance among several expressions, suggesting that the qualitative language used to describe different rainfall amounts by information senders were not distinguished by information receivers.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference15 articles.

1. Japan Meteorological Agency, Result of accuracy verification of weather forecast, http://www.data.jma.go.jp/fcd/yoho/kensho/yohohyoka_top.html, 2017. [accessed February 26, 2018]

2. Japan Meteorological Agency, Strength of rain and its expression, http://www.jma.go.jp/jma/kishou/know/yougo_hp/amehyo.html, 2017, [accessed February 15, 2018]

3. J. Asada, T. Katada, and Y. Oikawa, “A study on the acquisition of disaster information during the flood disaster in Koriyama at the end of August,1998,” Proc. of Hydraulic Engineering, Vol.44, pp. 307-312, 2000.

4. T. Katada, M. Kodama, and J. Asada, “Research on acquisition of disaster information and evacuation behavior in heavy rainfall disaster in Tokai district,” Advances in River Engineering, Vol.7, pp. 155-160, 2001 (in Japanese).

5. S. Irie, “Demolition of the Kinugawa River, How did the residents of Joso City evacuate? – Disaster information recognition and evacuation behavior survey of residents in “Kanto Tohoku heavy rain”,” The NHK Monthly Report on Broadcast Research, Vol.66, No.8, pp. 34-65, 2016 (in Japanese).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3