Very Short Time Range Forecasting Using CReSS-3DVAR for a Meso-γ-Scale, Localized, Extremely Heavy Rainfall Event: Comparison with an Extrapolation-Based Nowcast

Author:

Kato Ryohei, ,Shimizu Shingo,Shimose Ken-ichi,Iwanami Koyuru

Abstract

The forecast accuracy of a numerical weather prediction (NWP) model for a very short time range (≤1 h) for a meso-γ-scale (2–20 km) extremely heavy rainfall (MγExHR) event that caused flooding at the Shibuya railway station in Tokyo, Japan on 24 July 2015 was compared with that of an extrapolation-based nowcast (EXT). The NWP model used CReSS with 0.7 km horizontal grid spacing, and storm-scale data from dense observation networks (radars, lidars, and microwave radiometers) were assimilated using CReSS-3DVAR. The forecast accuracy of the heavy rainfall area (≥20 mm h-1), as a function of forecast time (FT), was investigated for the NWP model and EXT predictions using the fractions skill score (FSS) for various spatial scales of displacement error (L). These predictions were started 30 minutes before the onset of extremely heavy rainfall at Shibuya station. The FSS for L=1 km, i.e., grid-scale verification, showed NWP accuracy was lower than that of EXT before FT=40 min; however, NWP accuracy surpassed that of EXT from FT=45 to 60 min. This suggests the possibility of seamless, high-accuracy forecasts of heavy rainfall (≥20 mm h-1) associated with MγExHR events within a very short time range (≤1 h) by blending EXT and NWP outputs. The factors behind the fact that the NWP model predicted heavy rainfall area within the very short time range of ≤1 h more correctly than did EXT are also discussed. To enable this discussion of the factors, additional sensitivity experiments with a different assimilation method of radar reflectivity were performed. It was found that a moisture adjustment above the lifting condensation level using radar reflectivity was critical to the forecasting of heavy rainfall near Shibuya station after 25 min.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3