High Spatial Resolution Survey Using Frequency-Shifted Feedback Laser for Transport Infrastructure Maintenance

Author:

Murakami Takeharu, ,Saito Norihito,Komachi Yuichi,Okamura Kotaro,Michikawa Takashi,Sakashita Michio,Kogure Shigeru,Kase Kiwamu,Wada Satoshi,Midorikawa Katsumi

Abstract

We propose a remote surface measurement system that uses a laser to inspect tunnel walls.To prevent accidents caused by aging parts of the transportation infrastructure, such as tunnels and bridges, the maintenance of such structures has grown in importance. Although these structures are checked by human inspectors, it is hoped that the process can be further automated through the development of remote sensing technologies.In this article, we focus on the detection of cracks on tunnel surfaces. As the concrete surfaces of tunnels can have many discolored areas, the precision of conventional remote inspection methods based on digital cameras is limited.Employing a frequency-shifted feedback (FSF) laser to overcome this difficulty, we adopt three measurement principles: reflectance imaging, 3D measurement, and spectroscopy. We have realized high spatial resolution, which is essential to our purpose. Using reflectance imaging, we have detected cracks of more than 200μm in width on a concrete surface. Using 3D measurement with an FSF laser, we have detected as 3D shape a 0.35 mm crack on an actual concrete surface. We also have detected the presence of water on a concrete surface using 2.95μm mid-infrared light in the laboratory.We discuss the use of our system to reliably detect 0.2-mm-wide cracks on the basis of experimental results. The measurement results for the reference targets and real concrete are described.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference16 articles.

1. P. C. Chang, A. Flatau, and S. C. Liu, “Review Paper: Health Monitoring of Civil Infrastructure,” Structural Health Monitoring September, Vol.2, No.3, pp. 257-267, 2003.

2. Y. Matsuda, “Maintenance of Railway Structures with Aging Deterioration and Amarube Bridge Reconstruction,” Japan Railway and Transport Review, No.62, pp. 32-29, 2013.

3. F. C. Sham, N. Chen, and L. Long, “Surface crack detection by flash thermography on concrete surface,” Insight, Vol.50, No.5,pp. 240-243, 2008.

4. B. Hong, C. Rhim, and O. Büyüköztürk, “Wideband Microwave Imaging of Concrete for Nondestructive Testing,” J. of Structural Engineering, pp. 1451-1457, 2000.

5. A. Taketani, Y. Seki, H. Ohta, T. Hashiguchi, S. Yanagimachi, Y. Otake, Y. Yamagata, Y.Ikeda, H. Baba, S. Wang, Q. Jia, G. Hu, K. Hirota, S. Tanaka, and K. Kino, “Development of Un-Destructive Inspection System for Large Concrete Infrastructure by Using Accelerator Based Compact Neutron Source,” Proc. of IPAC, pp. 2262-2264, 2015.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3