Abstract
The non-hydrostatic depth-integrated model we developed to study solitary waves passing undisturbed in shape through a porous structure, involves hydrodynamic pressure. The equations are nonlinear, diffusive, and weakly dispersive wave equation for describing solitary wave propagation in a porous medium. We solve the equation numerically using a staggered finite volume with a predictor-corrector method. To demonstrate our non-hydrostatic scheme’s performance, we implement our scheme for simulating solitary waves over a flat bottom in a free region to examine the balance between dispersion and nonlinearity. Our computed waves travel undisturbed in shape as expected. Furthermore, the numerical scheme is used to simulate the solitary waves pass through a porous structure. Results agree well with results of a central finite difference method in space and a fourth-order Runge-Kutta integration technique in time for the Boussinesq model. When we quantitatively compare the wave amplitude reduction from our numerical results to experimental data, we find satisfactory agreement for the wave transmission coefficient.
Publisher
Fuji Technology Press Ltd.
Subject
Engineering (miscellaneous),Safety, Risk, Reliability and Quality
Reference12 articles.
1. K. Kathiresan and N. Rajendran, “Coastal mangrove forests mitigated tsunami,” Estuarine, Coastal and Shelf Science, Vol.65, No.3, pp. 601–606, 2005.
2. F. Dahdouh-Guebas, “Mangrove forests and tsunami protection,” McGraw-Hill Yearbook of Science & Technology, pp. 187–191, 2006.
3. S. Pudjaprasetya and I. Magdalena, “Wave Energy Dissipation over Porous Media,” Applied Mathematical Sciences, Vol.7, No.59, pp. 2925–2937, 2013.
4. Z. Gu and H. Wang, “Gravity Waves over Porous Bottoms,” Coastal Engineering, Vol.15, pp. 497–524, 1991.
5. I. Magdalena, S. R. Pudjaprasetya, and L. H. Wiryanto, “Wave Interaction with an Emerged Porous Media,” Advances in Applied Mathematics and Mechanics, Vol.6, No.5, pp. 680–692, Jun., 2015.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献