Ground Observation of Tephra Particles: On the Use of Weather Radar for Estimating Volcanic Ash Distribution

Author:

Hapsari Ratih Indri,Iida Masahiro,Muranishi Masahide,Ogawa Mariko,Syarifuddin Magfira,Iguchi Masato,Oishi Satoru, , ,

Abstract

This paper reports a preliminary attempt to determine volcanic ash particle size distribution using the video drop size detector (VDSD) for estimating volcanic ash amount with X-band radar. The VDSD records an image showing the size and number of particles falling into the aperture by a charge coupled device camera. Size distribution spectra of a range of particles from fine ash to small lapilli were derived in discrete form from the VDSD observation. The parameterization of the particle size distribution following Gamma function was done using volcanic ash of eruptions at the Sakurajima Volcano between December 13–21, 2014. Three Gamma distribution parameters were determined analytically. The analytical results revealed a continuous distribution of particles characterized by shape, intercept, and slope. The distribution was used to determine volcanic mass concentration, ground deposit weight, and reflectivity. Verification of these results with X-band radar observations showed that the reflectivity obtained from analytical results is similar to that from radar observation. However, the ground deposit weight from analysis was overestimated, compared with the real weight of ash deposit on the ground. The algorithm proposed in this study is expected to provide a practical method for estimating ash distribution in the aftermath of a volcanic eruption using radar-reflectivity for cases where direct measurement at the location is not possible. An overview of the algorithm for volcanic ash retrieval from X-band radar observations is also presented.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3