Assessing Climate Change Impact on Water Resources in the Tone River Basin, Japan, Using Super-High-Resolution Atmospheric Model Output

Author:

Takara Kaoru, ,Kim Sunmin,Tachikawa Yasuto,Nakakita Eiichi,

Abstract

We examined the potential impact of climate change on Tokyo metropolitan water resources in the Tone River basin using output from a super-high-resolution global atmospheric general circulation model, AGCM20, having 20-km spatial resolution and 1-hour temporal resolution. AGCM20 is run on the Earth Simulator and being developed under the Japanese government’s Kakushin21 program. AGCM20 has an advantage in simulating orographic rainfall and frontal rain bands, so we used its output to analyze Tone River basin water resources. The basin covers 16,840 km2and the main channel is 322 km long from its source to the Pacific Ocean. AGCM20 outputs hourly precipitation and daily variables such as snowfall, rainfall, snowmelt, evaporation, and transpiration for a present period, 1979-1998, and a projected period, 2075-2094. A comparison of these two periods showed that snow-related variables will decrease and all others will increase. Based on a comparison of ordered daily precipitation curves (ODPC) between AGCM20 and the Automated Meteorological Data Acquisition System (AMeDAS), a high-resolution Japan Meteorological Agency (JMA) surface observation network, we corrected AGCM20 precipitation data bias, and calculated the standardized precipitation index (SPI) drought indicator. The SPI for less than 6 months does not show noticeable variations under climate change, but the yearly SPI predicts more frequent dry conditions, indicating increased future vulnerability to subtle droughts.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3