Gestures Recognition Based on the Fusion of Hand Positioning and Arm Gestures
-
Published:2006-12-20
Issue:6
Volume:18
Page:751-759
-
ISSN:1883-8049
-
Container-title:Journal of Robotics and Mechatronics
-
language:en
-
Short-container-title:J. Robot. Mechatron.
Author:
Coquin Didier, ,Benoit Eric,Sawada Hideyuki,Ionescu Bogdan, ,
Abstract
To improve the link between operators and equipment, communication systems have begun using natural (user-oriented) languages such as speech and gestures. Our goal is to present gesture recognition based on the fusion of measurements from different sources. Sensors must be able to capture at least the location and orientation of the hand, as is done by Dataglove and a video camera. Dataglove gives the hand position and the video camera gives the general arm gesture representing the gesture’s physical and spatial properties based on the two-dimensional (2D) skeleton representation of the arm. Measurement is partly complementary and partly redundant. The application is distributed over intelligent cooperating sensors. We detail the measurement of hand positioning and arm gestures, fusion processes, and implementation.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference23 articles.
1. E. Benoit, T. Allevard, T. Ukegawa, and H. Sawada, “Fuzzy Sensor for Gesture Recognition Based on Shape Recognition of Hand,” Int. Symp. on Virtual Environments, Human-Computer Interfaces, and Measurement Systems (VECIMS’03), Lugnano, Switzerland, pp. 63-67, July, 2003. 2. H. Sawada, T. Ukegawa, and E. Benoit, “Robust gesture recognition by possibilistic approach based on data resampling,” Fuzzy Systems & Innovational Computing (FIC2004), Kitakyushu, Japan, pp. 168-173, June, 2004. 3. V. I. Pavlovic, R. Sharma, and T. S. Huang, “Visual interpretation of hand gestures for human-computer interaction: a review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.19, No.7, pp. 677-695, 1997. 4. Y. Wu and T. S. Huang, “Vision-Based Gesture Recognition: A Review,” Lecture Notes in Computer Science, Vol.1739, pp. 1-12, 1999. 5. H. S. Yoon, J. Soh, Y. J. Bae, and H. S. Yang, “Hand gesture recognition using combined features of location, angle and velocity,” Pattern Recognition, Vol.34, No.7, pp. 1491-1501, 2001.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Gesture Controlled Bot;2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON);2023-02-08
|
|