Author:
Emoto Shuhei, ,Ando Noriyasu,Takahashi Hirokazu,Kanzaki Ryohei
Abstract
Insects can adapt to various environments and perform adaptive behaviors with their simple nervous system. Understanding of the mechanisms underlying these adaptive behaviors has been expected to lead to novel control systems in robotics. In this study, we proposed and developed a robot controlled by an insect in order to evaluate the adaptability of insects. This robot reproduced the behavior of a male silkmoth (Bombyx mori) tethered on it with high precision, and was successful in reproducing the pheromone-oriented behavior that is an adaptive behavior of the male silkmoth. When we changed the forward motor gain of the robot, its speed changed based on the manipulation. However, the manipulated robot performed the same ability for the sex-pheromone orientation as existed before the manipulation. This implied that the programmed behavior pattern of the pheromone-oriented behavior was robust and important for successful orientation, which did not depend on the speed of movement. This robot exhibits a new method to manipulate interaction between the body and the environment and is expected to prove useful as a new experimental platform for analyzing adaptability.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference11 articles.
1. Y. Kuwana, S. Nagasawa, I. Shimoyama, and R. Kanzaki, “A pheromone-guided mobile robot that behaves like a silkworm moth with living antennae as pheromone sensors,” Int. J. Robot Res., Vol.17, pp. 924-933, 1998.
2. B. Webb, R. R. Harrison, and M. A. Willis, “Sensorimotor control of navigation in arthropod and artificial systems,” Arthropod struct. dev., Vol.33, pp. 301-329, 2004.
3. S. Yue and F. C. Rind, “A Collision detection system for a mobile robot inspired by locust visual system,” IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 3832-3837, 2005.
4. R. Kanzaki, S. Nagasawa, and I. Shimoyama, “Neural basis of odorsource searching behavior in insect microbrain system evaluated with a mobile robot,” Chem Senses, Vol.30 (suppl 1), pp. i285-i286, 2005.
5. J. R. Gray, V. Pawlowski, and M. A. Willis, “A method for recording behavior and multineuronal CNS activity from tethered insects flying in virtual space,” J. Neurosci. Methods, Vol.120, pp. 211-233, 2002.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献