Abstract
Microelectrodes are being developed in order to record action biopotentials of insects. Silicon was conventionally used as the electrode material and microelectrodes were fabricated by anisotropic etching and reactive ion etching. Because electrode microprobe shape and size were very difficult to control, we propose a novel pin-shaped multichannel microelectrode. Epoxy-based UV photoresist must be used as the electrode material to facilitate the control of the microelectrode shape and size. Analysis of the electrical properties of this electrode showed that it has properties excellent enough to record insect biopotentials.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference8 articles.
1. K. D. Wise, and K. Najafi, “A micromachined integrated sensor with on-chip self-test capability,” Digest IEEE S-S Sensor Conference, pp. 12-16, 1984.
2. K. Najafi, K. Wise, and T. Mochizuki, “A high-yield IC-compatible multichannel recording array,” IEEE Transactions on Electron Devices, ED-32, 7, pp. 1206-1211, 1985.
3. P. K. Campbell, K. Jones, R. Hube, K. Horch, and R. Normann, “A silicon-based, three-dimensional neural interface: manufacturing process for an intracortical electrode array,” IEEE Transactions on Biomedical Engineering, Vol.38, No.8, pp. 758-768, 1991.
4. T. Akin, and K. Najafi, “A micromachined silicon sieve electrode for nerve regeneration applications,” Transducers 91, pp. 128-131, 1991.
5. T. Stieglitz, M. Schuettler, and J. Meyer, “Micromachined multichannel cuff electrodes for interfacing small nerves,” 1st Joint Meeting of BMES & EMBS, Vol.487, 1999.