Author:
Huey LaQuieta, ,Sarkisov Sergey S.,Curley Michael J.,Adamovsky Grigory, ,
Abstract
New light-driven actuators based on films of polymer polyvinylidene fluoride are described. The actuators employ the photomechanical bending of the polymer film caused by low power (10mW and less) laser radiation. The photomechanical effect combines various physical mechanisms, such as anisotropic thermal expansion, converse piezoelectric mechanism along with photovoltaic and pyroelectric ones, while the mechanism of thermal expansion is dominant for slow motion. Mechanical vibrations of the strips of the photomechanical polymer were observed with periodic pulsed laser excitation. The resonance frequency is inversely proportional to the square of the length of the strip, in full agreement with the theory. Resonance frequency measurements were used to determine the modulus of elasticity of the films, which was close to 3.0x109Pa. Two possible applications were discussed: photonic switch and adaptive mirror. The proposed actuators have a potential of being used as the components of future light-driven micro/nano systems.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference13 articles.
1. J. Dakin and B. Culshaw, “Optical Fiber Sensors. Volume 4: Applications, Analysis, and Future Trends,” pp. 409-435, Artech House, Inc., Boston, MA, 1997.
2. P. De Dobbelaere, K. Falta, and S. Gloeckner, “Advances in integrated 2-D MEMS-based solutions for optical network applications,” IEEE Communications Magazine 41, S16-S23, 2003.
3. S. Inaba, H. Kumazaki, and K. Hane, “Photothermal vibration of fiber core for vibration-type sensor,” Jpn. J. Appl. Phys. 34, pp. 2018-2021, 1995.
4. M. G. Kuzyk, D. W. Garvey, S. R. Vigil, and D. J. Welker, “Alloptical devices in polymer optical fiber,” Chemical Physics 245, pp. 533-544, 1999.
5. Y. Otani, Y. Matsuba, and T. Yoshizawa, “Photothermal actuator composed of optical fibers,” in Optomechatronic Systems II, Hyung Suck Cho (Ed.), Proceedings of SPIE, Vol.4564, pp. 216-219, 2001.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献