Author:
Nishida Mami, ,Wang Hua O.,Tanaka Kazuo,
Abstract
This paper presents a study on the development and control of a small biped walking robot using shape memory alloys (SMAs). We propose a flexible flat plate (FFP) consisting of a polyethylene plate and SMAs. Based on a detailed investigation of the properties of the SMA-based FFP structure, we develop a lightweight small walking robot incorporating multiple SMA-based FFPs. The walking robot has four degrees of freedom and is controlled by switching the ON-OFF current signals to the SMA-based FFPs. The switching timing, central to the control strategy to achieve walking behavior, is determined through experiments. The small robot realizes biped walking by transferring the elastic potential energy (generated by deflections of the SMA-based FFPs) to kinematic energy. The resulting small biped walking robot weighs a mere 2.8 g (with a height of 70 mm). Our experimental results demonstrate the viability and utility of the small walking robot with the proposed SMA-based FFPs and the control strategy to achieve walking behavior.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference18 articles.
1. M. Vukobratovic and D. Juricic, “Contribution to the Synthesis of Biped Gai,” IEEE Trans. on Bio-Medical Engineering, Vol.BME-16, No.1, pp. 1-6, 1969.
2. K. Hirai, “Current and Future Perspecive of Honda Humanoid Robot,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Vol.2, pp. 500-508, 1997.
3. Y. Kuroki, “A small biped entertainment robot,” Int. Symposium on Micromechatronics and Human Science, pp. 3-4, 2001.
4. S. M. Dutta and F. H. Ghorbel, “Differential Hysteresis Modeling of a Shape Memory Alloy Wire Actuator,” IEEE Transactions on Mechatronics, Vol.10, No.2, pp. 189-197, April, 2005.
5. M. Hashimoto, M. Takeda, H. Sagawa, I. Chiba, and K. Sato, “Shape memory alloy and robotic actuators,” Journal of Robotic Systems, Vol.2, No.1, pp. 3-25, 1985.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献