A 4WD Omnidirectional Wheelchair with Enhanced Step Climbing Capability

Author:

Wada Masayoshi,

Abstract

In developing an omnidirectional wheelchair tilted to climb single high steps, we enhanced standard step climbing by introducing a four-wheel drive (4WD). One pair of front and back wheels is connected by transmission belts to rotate in unison with a drive motor, i.e., synchrodrive transmission. To avoid wheel slippage as the mechanism turns, two omniwheels are installed in front and two regular tires in back, enabling the front wheels to slide freely sideways while the two back wheels continuously contact the ground. A third motor on the 4WD platform rotates the chair at the center of the mobile base around the vertical axis. The 4WD enhances step climbing over that of standard wheelchairs, but back wheels limit the step height climbed, meaning that front wheels climb higher steps than back wheels. We analyzed 4WD statics to clarify differences in front and back wheel step climbing, finding that drive torque caused the difference and that this influence depends on the wheelbase and vehicle weight distribution ratio of the front and back wheel axes. We varied the load distribution ratio among wheels to maximize back wheel step climbing. To do so, we developed chair tilting with a linear drive and an inclination sensor. The linear drive changes the chair's tilt angle for keeping the wheelchair statics and to vary positioning of the center of gravity (COG) to enable back wheels to climb steps more efficiently. To confirm the effectiveness of chair tilting in this scheme, we tested step climbing in experiments in which a prototype wheelchair carrying a user climbed a 90 mm step, but the back wheels failed when chair tilting was disabled.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference12 articles.

1. “Population Statistics Japan 2006,” the National Institute of Population and Social Security Research, Japan.

2. “I-Bot wheelchair,” Independence Technology, http://www.ibotnow.com/

3. “Patrafour” Kanto Automobile Corp., http://www.kanto-aw.co.jp/jp/products/wheelchair/

4. Jefferey Farnam, “Four-wheel Drive Wheel-chair with Compound Wheels,” US patent 4,823,900, 1989.

5. http://mars.jpl.nasa.gov/MPF/mpf/rover.html

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3