Design of Three-wheeled Planetary Rover Tri-StarII

Author:

Hirose Shigeo, ,Kuwabara Hiroyuki,

Abstract

Many studies have been made concerning the planetary Rover, the essential element in the planet exploration mission, and some have already been put into practical use in exploration missions. In this paper, we propose an expandable three-wheeled rover, Tri-StarII, as a planetary rover having a new mechanism. Tri-StarII has three drive wheels and does not need suspension mechanism, so the drive mechanism is simplified and lightened. By use of this feature, the body is designed to be an expandable type with the wheels attached to a slide arm. By folding it up in the lander carrying it to the surfaces of the moon or Mars, and expanding to large size when running, it can achieve running stability equivalent to larger rovers. The wheels are attached to the body with an offset wheel steering mechanism. For the expansion and steering mechanisms, latches having very small actuators are used and the increase in weight is minimized by introduction of these mechanisms. Further, the running wheel uses a spring wheel usable in space environments. By using the expansion mechanism for the spring wheel, the energy loss in running is decreased and performance is improved. We confirmed the feasibility of an experimental unit.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Novel Variable-Diameter Wheel;Applied Sciences;2019-10-31

2. Concept of Inflatable Outer Wheel Rover for Exploration of Lunar and Planetary Holes and Subsurface Caverns;International Journal of Automation Technology;2016-07-05

3. Development of the Rover at Hirose Laboratory of Tokyo Institute of Technology;Journal of the Robotics Society of Japan;2014

4. Model Tests of Regolith Packaging Mechanism;Journal of Robotics and Mechatronics;2012-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3