Investigating the Congestion Levels on a Mesoscopic Scale During Outdoor Events

Author:

Tanida Sakurako12ORCID,Feliciani Claudio12ORCID,Jia Xiaolu12ORCID,Kim Hyerin3ORCID,Aikoh Tetsuya3ORCID,Nishinari Katsuhiro12ORCID

Affiliation:

1. Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan

2. Department of Aeronautics and Astronautics, School of Engineering, The University of Tokyo, Tokyo, Japan

3. Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan

Abstract

In event management, preventing excessive overcrowding is not only essential for providing comfort but also crucial for ensuring safety. However, understanding the crowd dynamics of participants in outdoor events can be challenging. One of the primary reasons is the limited availability of sensing systems suitable for outdoor use. Challenges include the need for power outlets and adapting to dynamic environmental conditions and unclear event boundaries. Consequently, there is still uncertainty about which measurements can be conducted to scientifically manage crowding based on sound principles. Therefore, there is a need for systems that are capable of discerning spatial and temporal heterogeneity in density and accurately estimating the number of people in regions of interest in both sparse and congested areas. In this study, we propose a novel approach for measuring and understanding crowd states at outdoor events. We designed a highly portable measurement system utilizing Bluetooth technology to monitor crowd density in real time, ensuring uninterrupted data collection even in remote event locations. This system stands out for its ability to operate effectively under diverse weather and lighting conditions without power outlets, making it highly adaptable to various outdoor settings. In our experiments, conducted at four distinct outdoor event locations, we used a 360° camera and LiDARs to validate the system. For instance, we deployed the system at 40-m intervals in a shopping district during a high-density parade. This deployment enabled us to capture the movement of the crowd and estimate the total number of people within the district. A key finding was the system’s capability to detect temporal and spatial congestion in both sparse and crowded areas. The system’s potential to estimate crowd sizes and manage diverse outdoor events marks an advancement over traditional methods like cameras and LiDARs.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Developments in Crowd Management: Theory and Applications;Journal of Disaster Research;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3