Implementation of Hydrological Model for the Malino Catchment Area in South Sulawesi Province, Indonesia
-
Published:2023-10-01
Issue:7
Volume:18
Page:806-813
-
ISSN:1883-8030
-
Container-title:Journal of Disaster Research
-
language:en
-
Short-container-title:J. Disaster Res.
Author:
Saleh Ayuko Hirani1ORCID, Tai Akira1, Yano Shinichiro1, Hatta Mukhsan Putra2
Affiliation:
1. Department of Maritime Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka, Fukuoka 819-0395, Japan 2. Department of Civil Engineering, Faculty of Engineering, Hasanuddin University, Makassar, Indonesia
Abstract
In South Sulawesi, the development of irrigation may be hindered by the continuing limitations and inadequacies of hydrological data. It is well known that the rainfall monitoring station is more extensive than the river flow monitoring station. Therefore, the Malino Catchment Area was selected to illustrate the theory of four tank components. The 1st tank (tank A) has two horizontal outlets (Qa1 and Qa2) and one vertical outlet (Ia); the 2nd tank (tank B) has one horizontal outlet (Qb) and one vertical outlet (Ib); the 3rd tank (tank C) has the same conceptual structure as tanks A and B; and the 4th tank (tank D) has only one horizontal outlet (Qd). To ensure that the tank model represents vertical and horizontal flows in a watershed region, the flows (Qa1, Qa2, Qb, Qc, and Qd) are predicted to accumulate in one flow, more or less, and must equal the measured discharge (Qo) at the specified time. Rainfall and evapotranspiration data are required to calculate this model. The 264.55 km2 (25902 ha) research area has an elevation range of 400–2400 masl. The findings for land use are dominated by plantations (41.01%), forests (40.79%), rice fields (15.44%), and residential areas (0.96%). In the calibration of the tank model, R2 is evaluated at 0.560% (good) and Nash–Sutcliffe efficiency is evaluated at 0.526% (good) to ensure that the model can represent the distribution of water flow components. Additionally, the measurements for the total water flow (Qtotal) were 13702 m3/y with a total rainfall of 3996 mm/y. Furthermore, surface flow accounts for 77.26% of the total runoff water, while intermediate flow accounts for 20.25%.
Funder
Rotary Yoneyama Memorial Foundation
Publisher
Fuji Technology Press Ltd.
Subject
Engineering (miscellaneous),Safety, Risk, Reliability and Quality
Reference24 articles.
1. M. Sugawara, “Automatic calibration of the tank model,” Hydrol. Sci. Bull., Vol.24, No.3, pp. 375-388, 1979. https://doi.org/10.1080/02626667909491876 2. S. Shikasho and K. Tanaka, “Runoff analysis of low-lying drainage basins in Japan,” J. Irrig. Eng. Rural Plan., Vol.1985, No.8, pp. 5-17, 1985. https://doi.org/10.11408/jierp1982.1985.8_5 3. T. Fukuda, R. Jayadi, Y. Nakano, and M. Kuroda, “Application of complex tank model for evaluating performance of water operation in a reused water irrigation system,” J. Fac. Agric. Kyushu Univ., Vol.44, Nos.1-2, pp. 189-198, 1999. https://doi.org/10.5109/24320 4. K. Mizumura, “Runoff prediction by simple tank model using recession curves,” J. Hydraul. Eng., Vol.121, No.11, pp. 812-818, 1995. https://doi.org/10.1061/(asce)0733-9429(1995)121:11(812) 5. Y. Fujihara, H. Tanakamaru, T. Hata, and A. Tada, “Performance evaluation of rainfall-runoff models using multi-objective optimization approach,” Proc. 2nd Int. Conf. Hydrol. Water Resour. Asia Pac. Reg., Vol.2, pp. 575-582, 2004.
|
|