Flood Inundation Mapping of the Hitachi Region in the Kuji River Basin, Japan, During the October 11–13, 2019 Extreme Rain Event

Author:

Shakti P. C. , ,Hirano Kohin,Iizuka Satoshi

Abstract

The frequency of severe flood events has been increasing recently in Japan. One of the latest events occurred in October 2019 and caused extensive damage in several river basins, especially in the central and northern regions of the country. In this study, we selected the Hitachi region (Hitachi-Omiya and Hitachi-Ota) within the Kuji River Basin which underwent considerable flooding due to the failure of embankments at two locations in the region. Maximum-possible flood inundation maps were generated using survey-based data and hydrological modeling for the Hitachi region. These maps incorporated the flood scenarios (embankment failures). All the generated products were compared with the reference flood mapping, i.e., Sentinel-1 data and Geospatial Information Authority of Japan (GSI) data for that region. It was observed that generated flood inundation mapping product based on the survey-data yielded results similar to those obtained with GSI data for the Hitachi region. Although each flood mapping product has advantages and disadvantages, they can be a good reference for the proper management and mitigation of flood disaster in the future. The rapid development of flood inundation mapping products that consider varying flood scenarios is an important part of flood mitigation strategies.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference44 articles.

1. Y. Shimizu, N. Tokashiki, and F. Okada, "The September 2000 torrential rain disaster in the Tokai region: Investigation of a mountain disaster caused by heavy rain in three prefectures

2. Aichi, Gifu and Nagano," J. Natural Disaster Sci., Vol.24, No.2, pp. 51-59, 2002.

3. T. Sato, T. Fukuzono, and S. Ikeda, “The Niigata flood in 2004 as a flood risk of low probability but high consequence,” S. Ikeda, T. Fukuzono, and T. Sato (Eds.), “A better integrated management of disaster risks: Toward resilient society to emerging disaster risks in mega-cities,” pp. 177-192, TERRAPUB and NIED, 2006.

4. K. Asahiro, M. Tani, and H. Kanekiyo, “Support for farmland restoration through mutual assistance after flood disasters in hilly and mountainous areas –Cases of the cities of Yame and Ukiha affected by the torrential rainfall in Northern Kyushu in July 2012–,” J. Disaster Res., Vol.10, No.5, pp. 794-806, doi: 10.20965/jdr.2015.p0794, 2015.

5. S. P. C., R. Misumi, T. Nakatani, K. Iwanami, M. Maki, T. Maesaka, and K. Hirano, “Accuracy of quantitative precipitation estimation using operational weather radars: a case study of heavy rainfall on 9–10 September 2015 in the East Kanto region, Japan,” J. Disaster Res., Vol.11, No.5, pp. 1003-1016, doi: 10.20965/jdr.2016.p1003, 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3