Continuously Operable Simulator and Forecasting the Deposition of Volcanic Ash from Prolonged Eruptions at Sakurajima Volcano, Japan

Author:

Iguchi Masato,Nakamichi Haruhisa,Takishita Kosei,Poulidis Alexandros P., , ,

Abstract

At Sakurajima volcano, frequent Vulcanian eruptions have been seen at the summit crater of Minamidake since 1955. In addition to this eruption style, the eruptive activities of Strombolian type and prolonged ash emission also occur frequently. We studied the design of a simulator of advection-diffusion-fallout of volcanic ash emitted continuously. The time function of volcanic ash eruption rate is given by a linear combination of the volcanic tremor amplitude and the volume change of the pressure source obtained from the ground motion. The simulation is repeated using discretized values of the eruption rate time function at an iteration time interval of the simulation. The integrated value of the volcanic ash deposition on the ground obtained from each individual simulation is used to estimate the value of the ash fallout. The plume height is given by an empirical equation proportional to a quarter of the power of the eruption rate. Since the wind velocity field near the volcano is complicated by the influence of the volcanic topography, the predicted values published by meteorological organizations are made in high resolution by Weather Research and Forecasting (WRF) for the simulation. We confirmed that an individual simulation can be completed within a few minutes of iteration interval time, using the PUFF model as the Lagrangian method and FALL3D-8.0 as the Eulerian method on a general-purpose PC. Except during rainfall, the radar reflectivity, the count of particles per particle size, and fall velocity obtained by the disdrometers can be used for the quasi-real time matching of the plume height calculated from the eruption rate and the ash fall deposition rate obtained from the simulation.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3