Experimental Constraints on the H2O-Saturated Plagioclase Liquidus and the Storage Depth of the Izu-Oshima 1986B Basaltic Andesite Melt

Author:

Oida Ryoya,Ishibashi Hidemi,Tomiya Akihiko,Ushioda Masashi,Hokanishi Natsumi,Yasuda Atsushi, , , ,

Abstract

High-temperature melting and crystallization experiments were carried out at pressures from 1 atm to 196 MPa and under H2O-saturated conditions on the basaltic andesite melt of the Izu-Oshima 1986B eruption (i.e., the BM melt), using a 1-atmosphere fO2-controlled furnace and an internally heated pressure vessel. These data were used to constrain the H2O-saturated plagioclase liquidus (HSPL) of the melt. The fO2 conditions were controlled by a mixed H2-CO2 gas at the Ni-NiO (NNO) buffer for the 1 atm experiments, but were not controlled for the high-pressure experiments. Plagioclase is the liquidus phase at 1 atm, whereas early saturation of Fe-Ti oxide above the plagioclase liquidus occurred in the high-pressure experiments due to the elevated fO2 conditions. The HSPL temperature decreases from 1172 ± 8°C to 1030 ± 20°C as the pressure increases from 1 atm to 196 MPa. A combination of previously proposed models for the plagioclase liquidus and melt H2O-solubility can predict the experimentally determined HSPL temperatures, even if oxidation-induced magnetite crystallization occurs. Using these models and the previously reported pre-eruptive temperature of ∼1100 ± 30°C, we estimate the pre-eruptive pressure conditions of the BM melt to be 42-32+48 MPa, which corresponds to depths of 1.9-1.4+1.9 km. The estimated depth is consistent with that of the shallow active dikes previously identified from geophysical studies, suggesting that the BM melt was derived from a small, shallow magma chamber formed in the shallow dike region.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference30 articles.

1. Japan Meteorological Agency Web site for the historical eruption list of Izu-Oshima volcano, https://www.data.jma.go.jp/svd/vois/data/tokyo/317_Izu-Oshima/317_history.html (in Japanese) [accessed December 2, 2021]

2. K. Endo, T. Chiba, H. Taniguchi, M. Sumita, S. Tachikawa, T. Miyahara, R. Uno, and N. Miyaji, “Tephrochronological study on the 1986-1987 eruptions of Izu-Oshima volcano, Japan,” Bull. Volcanol. Soc. Japan 2nd Ser., Vol.33, No.SPCL, pp. S32-S51, 1988 (in Japanese).

3. H. Ishibashi, and R. Oida, “The effects of temperature on decompression-driven crystallization and eruption dynamics of mafic magma: A case study of the 1986 basaltic andesite melt from Izu-Oshima volcano, Japan,” Geosci. Repts. Shizuoka Univ., No.45, pp. 55-66, 2018 (in Japanese).

4. S. Nakano and T. Yamamoto, “Major element chemistry of products of the 1986 eruption of Izu-Oshima Volcano,” Bull. Geol. Surv. Japan, Vol.38, No.11, pp. 631-647, 1987 (in Japanese).

5. T. Fujii, S. Aramaki, T. Kaneko, K. Ozawa, Y. Kawanabe, and T. Fukuoka, “Petrology of the lavas and ejecta of the November, 1986 eruption of Izu-Oshima volcano,” Bull. Volcanol. Soc. Japan 2nd Ser., Vol.33, pp. S234-254, 1988 (in Japanese).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3