Post-Eruptive Persistent Cooling Beneath the Summit Crater of Usu Volcano as Revealed by Magnetic Repeat Surveys

Author:

Hashimoto Takeshi,

Abstract

Remarkable and continuous geomagnetic field change, suggesting remagnetization at a shallow depth, was detected through repeated geomagnetic field observation of the summit area of Mt. Usu Volcano from 2008 to 2021. Long-term cooling of the remnant magma, that intruded during the 1977–82 eruption, was considered responsible for the remagnetization. A magnetic dipole parallel to the present geomagnetic field well reproduced the observation. The modeled source was located near the Ginnuma crater on the south side of the previously inferred intrusive body beneath the Usu-Shinzan cryptodome. Meanwhile, no magnetic source was detected on the other side of the intrusion, implying asymmetric heat transport paths around the intrusion. Considering previous studies on seismicity, geodetic modeling, and resistivity structure, the magnetic source region is plausibly a high permeability zone through which heat from the intruded magma has been efficiently transported. In other words, the source region can be a key monitoring target for future eruptions as it may be linked to the subsurface magma system.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3