Development of a Snow Load Alert System, “YukioroSignal” for Aiding Roof Snow Removal Decisions in Snowy Areas in Japan

Author:

Hirashima Hiroyuki,Iyobe Tsutomu,Kawashima Katsuhisa,Sano Hiroaki, , , ,

Abstract

This study developed a snow load alert system, known as the “YukioroSignal”; this system aims to provide a widespread area for assessing snow load distribution and the information necessary for aiding house roof snow removal decisions in snowy areas of Japan. The system was released in January 2018 in Niigata Prefecture, Japan, and later, it was expanded to Yamagata and Toyama prefectures in January 2019. The YukioroSignal contains two elements: the “Quasi-Real-Time Snow Depth Monitoring System,” which collects snow depth data, and the numerical model known as SNOWPACK, which can calculate the snow water equivalent (SWE). The snow load per unit area is estimated to be equivalent to SWE. Based on the house damage risk level, snow load distribution was indicated by colors following the ISO 22324. The system can also calculate post-snow removal snow loads. The calculated snow load was validated by using the data collected through snow pillows. The simulated snow load had a root mean square error (RMSE) of 21.3%, which was relative to the observed snow load. With regard to residential areas during the snow accumulation period, the RMSE was 13.2%. YukioroSignal received more than 56,000 pageviews in the snowheavy 2018 period and 26,000 pageviews in the less snow-heavy 2019 period.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference31 articles.

1. S. Yamaguchi, S. Nakai, K. Iwamoto, and A. Sato, “Influence of Anomalous Warmer Winter on Statistics of Measured Winter Precipitation Data,” J. Appl. Meteor. Climatol., Vol.48, No.11, pp. 2403-2409, 2009.

2. M. Ishizaka, H. Motoyoshi, S. Yamaguchi, S. Nakai, T. Shiina, and K. Muramoto, “Relationships between snowfall density and solid hydrometeors, based on measured size and fall speed, for snowpack modeling applications,” The Cryosphere, Vol.10, pp. 2831-2845, 2016.

3. S. Margreth, “Falling snow and ice from buildings and structures: risk assessment and mitigation – two case studies,” 8th Int. Conf. on Snow Engineering, pp. 222-227, 2016.

4. M. Carter and R. Stangl, “Increasing Problems of Falling Ice and Snow on Modern Tall Buildings,” CTBUH J., 2012 Issue IV, pp. 24-28, 2012.

5. A. Nielsen, “Snow, Ice and Icicles on Roofs – Physics and Risks,” 6th Nordic Conf. on Building Physics in the Nordic Countries, pp. 562-569, 2005.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3