Air Pollutants During COVID-19 Lockdown Period in India

Author:

Vignesh K. S. , ,Venkatasubramanian Padma

Abstract

Recent studies have indicated that certain atmospheric pollutants had significantly reduced in several countries during the lockdown period imposed to curb the spread of SARS-CoV-2-Virus. The Government of India declared the first lockdown from the end of March 2020, which continued till June 2020 in most Indian states. The present study compares the air quality indicators nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3) across India, during the months of March–August 2020 and the same period in 2019. The application of satellite information from NASA – Ozone Monitoring Instrument and Atmospheric Infrared Sounder were used to compare the quantum of air pollutants. The temporal variation of the air pollutants was studied using satellite imagery and geo-statistics on a monthly, national average basis, to assess the overall impact of the lockdown. NO2, SO2, and O3 showed some level of reduction during the period of study in 2020 when compared to 2019, whereas CO levels had gone up in 2020. NO2, a pollutant mainly arising from motor vehicle combustion, reduced by 3.98–12.1% in 2020 as compared to the same study period in 2019 and in April 2020, when there was a complete lockdown, it had dropped maximally (by 12.1%). The reduction in SO2 levels in 2020 ranged from around 0.5–9% but only during April–June 2020, whereas there was an increase in March, July, and August 2020 when compared to 2019. Despite a reduction in NO2, the O3 levels (which are dependent on NO2 levels) saw an increase in the atmosphere during March–May 2020 by 1.9–5%, and decreased during June–August 2020. The CO levels in the atmosphere did not reduce during lockdown; instead, it peaked in March, April, and May 2020, when compared to 2019, possibly due to incomplete combustion of materials containing carbon materials like wood, plastics, etc. This study demonstrates that it is possible to rapidly reduce atmospheric pollution in India. However, since the level of certain pollutants like O3 are dependent on others like NO2, reducing the atmospheric pollution globally is a sustained and concerted effort by all concerned.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference50 articles.

1. M. J. Molina and L. T. Molina, “Megacities and Atmospheric Pollution,” J. Air Waste Manag. Assoc., Vol.54, Issue 6, pp. 644-680, doi: 10.1080/10473289.2004.10470936, 2004.

2. U. Irfan, “Why India’s air pollution is so horrendous,” 2018, https://www.vox.com/2018/5/8/17316978/india-pollution-levels-air-delhi-health [accessed November 17, 2020].

3. Clean Air Initiative for Asian Cities (CAI-Asia) Center, “Air Quality in Asia: Status and Trends, 2010 Edition,” 2010, https://issuu.com/cai-asia/docs/aqinasia_2010 [accessed November 18, 2020]

4. “India Home to Three of the Largest NO2 Emission Hotspots: Greenpeace,” https://swachhindia.ndtv.com/india-three-nitrogen-dioxide-plants-greenpeace-air-pollution-world-27188/ [accessed November 17, 2020]

5. United Nations Children’s Fund (UNICEF), “Clear the air for children – The impact of air pollution on children,” 2016.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3