Author:
Kagawa Takao,Ohta Yusaku, ,
Abstract
In this research area, methodologies for prior predictions of potential hazards and real-time estimations of progressing hazards caused by earthquakes and volcanic eruptions are proved for disaster mitigation. The studies are based on the latest understanding of earthquake processes, volcanic activities, and the crustal structure. The studies have been conducted through the co-operation of the research fields of disaster prevention engineering and social science, in conjunction with the practical services of on-site works, to effectively provide the people with advance and immediately prior predictions. Predicting hazard potentials with high accuracy is important to the planning of disaster countermeasures. The hazards include ground motions, tsunamis, and land slides due to earthquakes as well as flows of volcanic ash and lava from volcanic activities. Real-time estimation of hazards and simultaneous transmission of the estimated results are also help in the mitigation of secondary hazards that followed the main disaster. Typical examples of the results are presented in this review paper.
Publisher
Fuji Technology Press Ltd.
Subject
Engineering (miscellaneous),Safety, Risk, Reliability and Quality
Reference36 articles.
1. K. Asano, H. Sekiguchi, T. Iwata, W. Suzuki, S. Aoi, and T. Kunugi, “Source Process of the 2011 Off the Pacific Coast of Tohoku Earthquake,” H. Kawase (Eds.), “Studies on the 2011 Off the Pacific Coast of Tohoku Earthquake, Natural Disaster Science and Mitigation Engineering: DPRI Reports,” Springer, pp. 17-36, 2014.
2. H. Kubo, T. Iwata, K. Asano, and S. Aoi, “Period-dependent seismic radiation for the 2011 Tohoku-oki earthquake estimated by multiple-period-band source modelling,” The 26th General Assembly of International Union of Geodesy and Geophysics (IUGG), S05p-373, 2015.
3. K. Asano and T. Iwata, “Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data,” Earth, Planets and Space, Vol.68, Article No.147, doi:10.1186/s40623-016-0519-9, 2016.
4. K. Irikura and H. Miyake, “Recipe for Predicting Strong Motion from Crustal Earthquake Scenarios,” Pure and Applied Geophysics, Vol.168, No.1-2, pp. 85-104, doi:10.1007/s00024-010-0150-9, 2010.
5. H. Sekiguchi, T. Iwata, and K. Asano, “Strong Ground Motion Simulation for the 2018 Northern Osaka Prefecture Earthquake (MJ6.1),” Programme and Abstracts of the Seismological Society of Japan, S24-15, 2018 (in Japanese).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献