Author:
Sontayasara Thanapat,Jariyapongpaiboon Sirawit,Promjun Arnon,Seelpipat Napat,Saengtabtim Kumpol,Tang Jing,Leelawat Natt, , ,
Abstract
In the year 2020, SARS-CoV-2, the virus behind the coronavirus disease (COVID-19) pandemic, affected many lives and businesses worldwide. COVID-19, which originated in Wuhan City, China, at the end of December 2019, spread over the entire world in approximately four months. By October 2020, approximately 20 million people were infected and millions had died from this disease. Many health organizations such as the World Health Organization and Centers for Disease Control and Prevention made COVID-19 their primary focus. Many industries, especially, the tourism industry, were affected by the pandemic as many flight and hotel reservations were canceled. Thailand, a country considered one of the world’s most popular tourist destinations, suffered much losses because of this pandemic. Many events and travel bookings were canceled and/or postponed. Many people expressed their views and emotions related to this situation over social media, which is considered a powerful media for spreading news and information. In this research, the views of people who were planning to travel to Bangkok, the capital city and most popular destination in Thailand, were retrieved from Twitter for the dates between April 3 and 30, 2020, the period during which the country underwent nationwide lockdown. Sentiment analysis was performed using the support vector machine algorithm. The results showed 71.03% classification accuracy based on three sentiment classifications: positive, negative, and neutral. This study could thus provide an insight into travelers’ opinions and sentiments related to the tourism business. Based on the significant terms in each sentiment extracted, strengths and weaknesses of each tourism issue could be obtained, which could be used for making recommendations to the related tourism organizations.
Funder
Japan International Cooperation Agency
Chulalongkorn University
Publisher
Fuji Technology Press Ltd.
Subject
Engineering (miscellaneous),Safety, Risk, Reliability and Quality
Reference31 articles.
1. S. Chunhakasikarn, “Legal implications of COVID-19 disruption for employers in Thailand,” Bankok Post, https://www.bangkokpost.com/business/1894865/legal-implications-of-covid-19-disruption-for-employers-in-thailand [accessed October 1, 2020].
2. NESDC, “NESDC Economic Report: Thai Economic Performance in Q2 and Outlook for 2020,” https://www.nesdc.go.th/nesdb_en/article_attach/article_file_20200827153114.pdf [accessed October 1, 2020].
3. P.-W. Liang and B.-R. Dai, “Opinion mining on social media data,” Proc. of the 2013 IEEE 14th Int. Conf. on Mobile Data Management, Vol.2, pp. 91-96, 2013.
4. K. Meechang, N. Leelawat, J. Tang, A. Kodaka, and C. Chintanapakdee, “The acceptance of using information technology for disaster risk management: A systematic review,” Engineering J., Vol.24, No.4, pp. 111-132, 2020.
5. D. Gonzalez-Marron, D. Mejia-Guzman, and A. Enciso-Gonzalez, “Exploiting data of the Twitter social network using sentiment analysis,” Applications for Future Internet, Lecture Notes of the Institute for Computing Sciences, Social Informatics and Telecommunications Engineering, Vol.179, pp. 35-38, 2017.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献