Twitter Sentiment Analysis of Bangkok Tourism During COVID-19 Pandemic Using Support Vector Machine Algorithm

Author:

Sontayasara Thanapat,Jariyapongpaiboon Sirawit,Promjun Arnon,Seelpipat Napat,Saengtabtim Kumpol,Tang Jing,Leelawat Natt, , ,

Abstract

In the year 2020, SARS-CoV-2, the virus behind the coronavirus disease (COVID-19) pandemic, affected many lives and businesses worldwide. COVID-19, which originated in Wuhan City, China, at the end of December 2019, spread over the entire world in approximately four months. By October 2020, approximately 20 million people were infected and millions had died from this disease. Many health organizations such as the World Health Organization and Centers for Disease Control and Prevention made COVID-19 their primary focus. Many industries, especially, the tourism industry, were affected by the pandemic as many flight and hotel reservations were canceled. Thailand, a country considered one of the world’s most popular tourist destinations, suffered much losses because of this pandemic. Many events and travel bookings were canceled and/or postponed. Many people expressed their views and emotions related to this situation over social media, which is considered a powerful media for spreading news and information. In this research, the views of people who were planning to travel to Bangkok, the capital city and most popular destination in Thailand, were retrieved from Twitter for the dates between April 3 and 30, 2020, the period during which the country underwent nationwide lockdown. Sentiment analysis was performed using the support vector machine algorithm. The results showed 71.03% classification accuracy based on three sentiment classifications: positive, negative, and neutral. This study could thus provide an insight into travelers’ opinions and sentiments related to the tourism business. Based on the significant terms in each sentiment extracted, strengths and weaknesses of each tourism issue could be obtained, which could be used for making recommendations to the related tourism organizations.

Funder

Japan International Cooperation Agency

Chulalongkorn University

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference31 articles.

1. S. Chunhakasikarn, “Legal implications of COVID-19 disruption for employers in Thailand,” Bankok Post, https://www.bangkokpost.com/business/1894865/legal-implications-of-covid-19-disruption-for-employers-in-thailand [accessed October 1, 2020].

2. NESDC, “NESDC Economic Report: Thai Economic Performance in Q2 and Outlook for 2020,” https://www.nesdc.go.th/nesdb_en/article_attach/article_file_20200827153114.pdf [accessed October 1, 2020].

3. P.-W. Liang and B.-R. Dai, “Opinion mining on social media data,” Proc. of the 2013 IEEE 14th Int. Conf. on Mobile Data Management, Vol.2, pp. 91-96, 2013.

4. K. Meechang, N. Leelawat, J. Tang, A. Kodaka, and C. Chintanapakdee, “The acceptance of using information technology for disaster risk management: A systematic review,” Engineering J., Vol.24, No.4, pp. 111-132, 2020.

5. D. Gonzalez-Marron, D. Mejia-Guzman, and A. Enciso-Gonzalez, “Exploiting data of the Twitter social network using sentiment analysis,” Applications for Future Internet, Lecture Notes of the Institute for Computing Sciences, Social Informatics and Telecommunications Engineering, Vol.179, pp. 35-38, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3