A CHANS Approach to Investigating Post-Disaster Recovery Potential in Rural Japan

Author:

Diehl Jessica Ann,Asahiro Kazuo,Hwang Yun Hye,Hirashima Taiga,Kong Lingchang,Wang Zhe,Yao Haomu,Tan Puay Yok, ,

Abstract

Natural disaster recovery is a critical issue in rural Japan, yet repairing infrastructure, stabilising landscapes, and aiding those displaced is exceedingly expensive. Restoration of disaster affected landscapes mainly focuses on infrastructure repair, with less attention to socio-ecological activities pre- and post-disaster. The absence of integrated socio-ecological perspectives to disaster restoration creates missed opportunities for approaches more sensitive to local needs and resources. Coupled human and natural systems (CHANS) frameworks attempt to bridge social and natural sciences with the effect that interactions between human and natural systems can emerge that might not be apparent by studying them separately. However, application of CHANS frameworks in the context of natural disaster recovery in rural Japan is limited, and more consideration of the challenges is needed. The aim of this paper is to describe the design of a CHANS project and summarize lessons learned in applying this complex framework. The CHANS project comprised four graduate student projects investigating different topics related to landslide recovery and future disaster vulnerability after the Northern Kyushu Heavy Rainfall in July 2012 event in rural Japan. For lessons learned, we suggest CHANS projects to be designed as a nested hierarchy of research questions, aims, objectives, and hypotheses to enable deeper synthesis at a higher level. Despite limitations in the design of our CHANS project, triangulation of data enabled us to conclude meaningful findings. When faced with limited resources, it is impossible to design a complex study accounting for all relevant factors, but a CHANS approach can enable integrated socio-ecological insights and foster innovative solutions for improving resource management and cost-effectiveness of disaster recovery plans.

Funder

Kyushu University

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3