Planning the Shortest Carrying Trajectory Including Path and Attitude Change Considering Gripping Constraints

Author:

Ario Takahiro, ,Mizuuchi Ikuo

Abstract

Carrying gripped objects at high speed can lead to gripping failure owing to loads applied to the gripper by its acceleration. When carrying an object at high speed, it is important to carry it with accelerations at which gripping is maintained. Previously proposed methods generated the shortest carrying trajectory for a predetermined trajectory path. In this study, focusing on the object-carrying trajectory and the hand attitude of the gripper, we propose a method to generate the shortest carrying trajectory by varying the state quantities. The proposed method considers the gripping force and the deformation of the gripper. During planning, we estimated the deformation volume of the gripper from its inputs and generated the shortest carrying trajectory with the allowable force and deformation values as constraints. Using the proposed method, we generated a trajectory capable of carrying objects in a shorter time (0.28 times) than in a straight-line trajectory and conducted experiments with a robot arm. The trajectory was generated while keeping the hand attitude unchanged. Through experiments, we have proved the effectiveness of keeping objects gripped on the generated shortest carrying trajectory. Compared with a success ratio of 0.47 in keeping objects gripped on the trajectory with the same time as the generated trajectory, the success ratio on the generated trajectory is as high as 1.0.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3