Development of a Force Sensor for a Neuroendovascular Intervention Support Robot System
-
Published:2022-12-20
Issue:6
Volume:34
Page:1297-1305
-
ISSN:1883-8049
-
Container-title:Journal of Robotics and Mechatronics
-
language:en
-
Short-container-title:J. Robot. Mechatron.
Author:
Tadauchi Hiroki,Nagano Yoshitaka,Miyachi Shigeru,Kawaguchi Reo,Ohshima Tomotaka,Matsuo Naoki, , , ,
Abstract
Neuroendovascular catheterization using fluoroscopy poses the problem to operators and staffs of cumulative radiation exposure. To solve this problem, we are developing a remote-controlled master-slave robot. Because a wire-like elongated treatment device is inserted into a blood vessel using a catheter, the robot requires a sensor to detect the insertion force of the wire. The proposed sensor is integrated into a robot installed in an X-ray fluoroscopy room that is remotely controlled from another room. The features of this sensor include measurement of the insertion force with sufficient accuracy, simple wire attachment, and an inexpensive disposable sensor head, rendering it very suitable for practical application. In this paper, we report on these features, as well as the results of a practical test of the sensor using a cerebrovascular model.
Funder
Japan Society for the Promotion of Science
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference21 articles.
1. F. Arai, M. Tanimoto, T. Fukuda, K. Shimojima, H. Matsuura, and M. Negoro, “Multimedia tele-surgery using high speed optical fiber network and its application to intravascular neurosurgery – system configuration and computer networked robotic implementation,” Proc. of IEEE Int. Conf. on Robotics and Automation, Minneapolis, MN, USA, Vol.1, pp. 878-883, doi: 10.1109/ROBOT.1996.503883, 1996. 2. M. Tanimoto, F. Arai, T. Fukuda, K. Itoigawa, M. Hashimoto, I. Takahashi, and M. Negoro, “Telesurgery System for Intravascular Neurosurgery,” S. L. Delp, A. M. DiGoia, and B. Jaramaz (Eds.), “Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000,” Berlin, Heidelberg: Springer Berlin Heidelberg, Vol.1935, pp. 29-39, doi: 10.1007/978-3-540-40899-4_4, 2000. 3. J. Harrison, L. Ang, J. Naghi, O. Behnamfar, A. Pourdjabbar, M. P. Patel, R. R. Reeves, and E. Mahmud, “Robotically-assisted percutaneous coronary intervention: Reasons for partial manual assistance or manual conversion,” Cardiovascular Revascularization Medicine, Vol.19, No.5, pp. 526-531, doi: 10.1016/j.carrev.2017.11.003, 2018. 4. G. Weisz, D. C. Metzger, R. P. Caputo, J. A. Delgado, J. J. Marshall, G. W. Vetrovec, M. Reisman, R. Waksman, J. F. Granada, V. Novack, J. W. Moses, and J. P. Carrozza, “Safety and Feasibility of Robotic Percutaneous Coronary Intervention,” J. of the American College of Cardiology, Vol.61, No.15, pp. 1596-1600, doi: 10.1016/j.jacc.2012.12.045, 2013. 5. V. M. Pereira, N. M. Cancelliere, P. Nicholson, I. Radovanovic, K. E. Drake, J.-M. Sungur, T. Krings, and A. Turk, “First-in-human, robotic-assisted neuroendovascular intervention,” J. of NeuroInterventional Surgery, Vol.12, No.4, pp. 338-340, doi: 10.1136/neurintsurg-2019-015671.rep, 2020.
|
|