Development of an Automatic Tracking Camera System Integrating Image Processing and Machine Learning

Author:

Fujitake Masato,Inoue Makito,Yoshimi Takashi, ,

Abstract

This paper describes the development of a robust object tracking system that combines detection methods based on image processing and machine learning for automatic construction machine tracking cameras at unmanned construction sites. In recent years, unmanned construction technology has been developed to prevent secondary disasters from harming workers in hazardous areas. There are surveillance cameras on disaster sites that monitor the environment and movements of construction machines. By watching footage from the surveillance cameras, machine operators can control the construction machines from a safe remote site. However, to control surveillance cameras to follow the target machines, camera operators are also required to work next to machine operators. To improve efficiency, an automatic tracking camera system for construction machines is required. We propose a robust and scalable object tracking system and robust object detection algorithm, and present an accurate and robust tracking system for construction machines by integrating these two methods. Our proposed image-processing algorithm is able to continue tracking for a longer period than previous methods, and the proposed object detection method using machine learning detects machines robustly by focusing on their component parts of the target objects. Evaluations in real-world field scenarios demonstrate that our methods are more accurate and robust than existing off-the-shelf object tracking algorithms while maintaining practical real-time processing performance.

Funder

Japan Construction Machinery and Construction Association

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference27 articles.

1. Unmanned Construction Association, “Trends and prospects for unmanned construction,” Construction Project Planning, Vol.681, pp. 6-12, 2006 (in Japanese).

2. K. Chayama et al., “Technology of Unmanned Construction System in Japan,” J. Robot. Mechatron., Vol.26, No.4, pp. 403-417, doi: 10.20965/jrm.2014.p.0403, 2014.

3. T. Bock, “Construction Robotics,” J. Robot. Mechatron., Vol.28, No.2, pp. 116-122, doi: 10.20965/jrm.2016.p0116, 2016.

4. K. Tateyama, “Achievement and Future Prospects of ICT Construction in Japan,” J. Robot. Mechatron., Vol.28, No.2, pp. 123-128, doi: 10.20965/jrm.2016.p0123, 2016.

5. T. Tanimoto et al., “Research on Superimposed Terrain Model for Teleoperation Work Efficiency,” J. Robot. Mechatron., Vol.28, No.2, pp. 173-184, doi: 10.20965/jrm.2016.p0173, 2016.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on a Machine Vision-based Image Tracking System for Sports;2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2023-04-29

2. Object Detection and Segmentation Using Deeplabv3 Deep Neural Network for a Portable X-Ray Source Model;Journal of Advanced Computational Intelligence and Intelligent Informatics;2022-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3