Author:
Fujitake Masato,Inoue Makito,Yoshimi Takashi, ,
Abstract
This paper describes the development of a robust object tracking system that combines detection methods based on image processing and machine learning for automatic construction machine tracking cameras at unmanned construction sites. In recent years, unmanned construction technology has been developed to prevent secondary disasters from harming workers in hazardous areas. There are surveillance cameras on disaster sites that monitor the environment and movements of construction machines. By watching footage from the surveillance cameras, machine operators can control the construction machines from a safe remote site. However, to control surveillance cameras to follow the target machines, camera operators are also required to work next to machine operators. To improve efficiency, an automatic tracking camera system for construction machines is required. We propose a robust and scalable object tracking system and robust object detection algorithm, and present an accurate and robust tracking system for construction machines by integrating these two methods. Our proposed image-processing algorithm is able to continue tracking for a longer period than previous methods, and the proposed object detection method using machine learning detects machines robustly by focusing on their component parts of the target objects. Evaluations in real-world field scenarios demonstrate that our methods are more accurate and robust than existing off-the-shelf object tracking algorithms while maintaining practical real-time processing performance.
Funder
Japan Construction Machinery and Construction Association
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference27 articles.
1. Unmanned Construction Association, “Trends and prospects for unmanned construction,” Construction Project Planning, Vol.681, pp. 6-12, 2006 (in Japanese).
2. K. Chayama et al., “Technology of Unmanned Construction System in Japan,” J. Robot. Mechatron., Vol.26, No.4, pp. 403-417, doi: 10.20965/jrm.2014.p.0403, 2014.
3. T. Bock, “Construction Robotics,” J. Robot. Mechatron., Vol.28, No.2, pp. 116-122, doi: 10.20965/jrm.2016.p0116, 2016.
4. K. Tateyama, “Achievement and Future Prospects of ICT Construction in Japan,” J. Robot. Mechatron., Vol.28, No.2, pp. 123-128, doi: 10.20965/jrm.2016.p0123, 2016.
5. T. Tanimoto et al., “Research on Superimposed Terrain Model for Teleoperation Work Efficiency,” J. Robot. Mechatron., Vol.28, No.2, pp. 173-184, doi: 10.20965/jrm.2016.p0173, 2016.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on a Machine Vision-based Image Tracking System for Sports;2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2023-04-29
2. Object Detection and Segmentation Using Deeplabv3 Deep Neural Network for a Portable X-Ray Source Model;Journal of Advanced Computational Intelligence and Intelligent Informatics;2022-09-20