Acquisition and Visualization of Micro-Vibration of a Sound Wave in 3D Space

Author:

Sagawa Ryusuke,Higuchi Yusuke,Furukawa Ryo,Kawasaki Hiroshi, , ,

Abstract

The acquisition of micro-vibrations is important for analyzing machinery. In the present study, we propose a method for measuring and visualizing the three-dimensional (3D) displacements of such micro-vibrations, especially in the case of sound waves propagating through space. The proposed method uses the speckle patterns of coherent light to measure the minute displacements. Speckle patterns are useful for detecting extremely small displacements owing to their sensitivity to the pose of the object. However, it is impossible to measure the displacement at each position because the pattern changes nonlinearly with respect to large depth changes. Therefore, a method of nonlinear low-dimensional embedding of the speckle pattern is proposed to analyze the displacements and extended to measure micro-displacements in a 3D space. We divided the 3D space into multiple slices and synchronously captured each speckle pattern. The displacements in the entire 3D space were simultaneously recovered by optimizing the embedded vectors, which were consistent in a 3D lattice. The propagation of sound waves in the 3D space was visualized using the volume-rendering technique. The experiments confirmed that the proposed method correctly measured the displacements by comparing them with the ground truth captured by microphones. We also visualized the wavefront of the sound wave propagating through space.

Funder

Japan Society for the Promotion of Science

New Energy and Industrial Technology Development Organization

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference24 articles.

1. J. Goodman, “Some fundamental properties of speckle,” JOSA, Vol.66, No.11, pp. 1145-1150, 1976.

2. C. Dainty (Ed.), “Laser Speckle and Related Phenomena,” 2nd ed., Springer-Verlag, 1984.

3. R. Sagawa, Y. Higuchi, H. Kawasaki, R. Furukawa, and T. Ito, “Dense pixel-wise micro-motion estimation of object surface by using low dimensional embedding of laser speckle pattern,” Proc. of the Asian Conf. on Computer Vision, 2020.

4. G. D’Emilia, L. Razzè, and E. Zappa, “Uncertainty analysis of high frequency image-based vibration measurements,” Measurement, Vol.46, No.8, pp. 2630-2637, 2013.

5. E. Caetano, S. Silva, and J. Bateira, “A vision system for vibration monitoring of civil engineering structures,” Experimental Techniques, pp. 74-82, 2011.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing Physical Impacts Using Transient Surface Wave Imaging;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3