Low-Voltage Activation Based on Electrohydrodynamics in Positioning Systems for Untethered Robots

Author:

Abe Keita,Seki Yumeta,Kuwajima Yu,Minaminosono Ayato,Maeda Shingo,Shigemune Hiroki, ,

Abstract

In recent years, untethered soft robots, free of the lines that restrict their mobility, have been studied extensively. Our research team has been focusing on the electrohydrodynamic phenomena (EHD) as a driving mechanism for untethered robots. EHD is a phenomenon in which a flow is generated by applying a high voltage to a dielectric liquid. We propose a method to drive a robot in an untethered manner using EHD by vertically stacking two types of liquids: conductive and dielectric. This method is simpler, more energy-efficient, and quieter than conventional systems. Although a lower voltage would prevent the enlargement of the system by limiting the electronic components, the generation of EHD requires a high voltage. Therefore, in this study, to realize the low voltage drive of untethered robots dominated by the electrostatic actuator, we tackled the reduction of the driving voltage by investigating the phenomenon. As a result, we achieved low voltage driving at 15 V and successfully drove with off-the-shelf batteries (18 V). We also investigated the output current flowing through the system to reduce power consumption. Therefore, in addition to improving the energy efficiency of the system, we confirmed that the difference of the generated current depended on the thickness of the dielectric liquid and the concentration of the conductive liquid.

Funder

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3