Fabrication of Microneedle from Stretched Biodegradable Polymer Sheet by 3D Laser Machining

Author:

Aoyagi Seiji,Sato Junya,Takahashi Tomokazu,Suzuki Masato,Matsumoto Shinichi, , ,

Abstract

Polylactic acid (PLA) microneedles have been usually fabricated by injection molding. Herein, we consider microneedles that mimic the maxillae of mosquito proboscises, which have sharp tips with jagged harpoon-like protrusions. In case of such microneedles, filling the melting PLA resin up to the tip of the mold trough without burrs is challenging. To address this issue, we have proposed a new microneedle fabrication method in this paper. In this method, the needle with the desired shape was obtained from a PLA sheet by femtosecond laser machining. The needle was turned by 90°, and its tip further cut obliquely with the laser for three-dimensional (3D) sharpening. Tensile and buckling tests were conducted by using a test piece cut out from the PLA sheet. It was experimentally established that the strength and Young’s modulus along the sheet’s stretch direction are higher than those along its perpendicular direction. The 3D sharpened PLA microneedle successfully penetrated an artificial skin made of polydimethylsiloxane. A pair of microneedles were alternately vibrated against each other, mimicking the motion of mosquito two maxillae. With this alternate vibration, the resistance force during insertion was found to be lower compared to that without vibration.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference41 articles.

1. R. S. Woodworth and H. Schlosberg, “Experimental Psychology,” Rinehart and Winston, 1965.

2. S. Aoyagi, “Overview of microneedles,” J. Japan Soc. Prec. Eng., Vol.82, No.12, pp. 999-1004, 2016 (in Japanese).

3. N. Roxhed, T. C. Gasser, P. Griss, G. A. Holzapfel, and G. Stemme, “Penetration-enhanced utrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery,” J. MEMS, Vol.16, No.6, pp. 1429-1440, 2007.

4. S. Henry, D. V. McAllister, M. G. Allen, and M. R. Prausnitz, “Micromachined needles for the transdermal delivery of drugs,” Proc. MEMS’98, pp. 494-498, 1998.

5. S. J. Moon and S. S. Lee, “Fabrication of microneedle array using inclined LIGA process,” Proc. Transducers’03, pp. 1546-1549, 2003.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3