Deformation and Trapping of Cell Nucleus Using Micropillar Substrates Possibly Affect UV Radiation Resistance of DNA

Author:

Nagayama Kazuaki1,Sagawa Chiaki1,Sato Akiko1

Affiliation:

1. Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaraki 316-8511, Japan

Abstract

DNA damage induced by the ultraviolet (UV) light, which affects adversely on genome stability, causes many kinds of diseases. Thus, a biochemical or biomechanical method in DNA damage protection is well required. In the present study, we investigated the effects of mechanical factors, such as deformation of cell nucleus using polydimethylsiloxane (PDMS)-based microfabricated array of micropillars, on UV radiation resistance of DNA in cultured cells. The epithelial-like cells spread normally in the spaces between micropillars and their nuclei showed remarkable deformation and appeared to be “trapped” mechanically on the array of pillars. We found that the UV radiation-induced DNA damage estimated by the fluorescent intensity of the phospho-histone γ-H2AX, was significantly inhibited with the nucleus deformation on the pillars. The result indicates that the inhibition of UV radiation-induced DNA damages might be resulted from structural change of DNA caused by the mechanical stress of the cell nucleus on the micropillars.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Naito Foundation

Uehara Memorial Foundation

Takeda Science Foundation

Japan Agency for Medical Research and Development

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3