An Electrolarynx Control Method Using Myoelectric Signals from the Neck

Author:

Oe Katsutoshi,

Abstract

Patients who have lost vocal cord function due to laryngeal cancer or laryngeal injury are incapable of speech because it is impossible to generate the laryngeal tone from which the voice originates. For such patients, various speech production substitutes have been devised and put into practical use. The electrolarynx is one of these speech production substitutes and it can be used with relative ease. However, the sound is sometimes difficult to hear and its quality is monotonous. Therefore, focusing on the control method to improve the articulation of the electrolarynx, we have proposed an electrolarynx controlled by myoelectric signals of the neck. The sternohyoid muscle, which is located in the superficial layer of the neck, was the source of the myoelectric signals. This muscle is active during speech, and its activity increases mainly at the time of speech in a low voice. We succeeded in detecting the surface myoelectric signals of the sternohyoid muscle and performing on/off control of the electrolarynx by signal processing. This report includes the derivation of a control function for converting into a control signal of the fundamental frequency of the electrolarynx from the relationship between the myoelectric signals and the fundamental frequency of the voice. This report also includes an evaluation of the controllability of the electrolarynx by comparing the obtained control signal with the user’s intention. Regarding the control of the fundamental frequency, we have proposed a method of control in three stages – high, medium, and low – and a method of control in two stages – high and low – and compared their performances. The results of the three-stage control indicated that the use of the logarithm as a control function for converting the myoelectric signals into the fundamental frequency of the electrolarynx succeeded in the control at an accuracy of 90% or more by changing the pitch of the generated sound depending on the subjects. It was also indicated that the error rate was as low as less than 20%, while maintaining a constant sound. This makes it clear that the use of the logarithm as a control function gives the highest controllability. The two-stage control exhibits a very high control success rate exceeding 90%, regardless of the type of control function; in particular, the control function using the logarithm exhibits a control success rate exceeding 95%. These results indicate that the electrolarynx control function obtained using the logarithmic function has excellent controllability.

Funder

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference18 articles.

1. B. W. Pearson, “Subtotal laryngectomy,” Laryngoscope, Vol.91, No.11, pp. 1904-1912, 1981.

2. M. Kariyasu, T. Matsudaira, and M. Toyama, “Communication disorders and estimated number of persons with disabilities,” Report of Kyoto Gakuen University General Research Center, Vol.18, pp. 55-60, 2017 (in Japanese).

3. H. Iwashita, H. Imai, R. Namba, T. Hayabara, M. Kawai, N. Sunohara, N. Fukuhara, and T. Saida, “A guideline for the management of ALS in national hospitals,” IRYO, Vol.54. No.12, pp. 584-586, 2000 (in Japanese).

4. K. Tatara, H. Fukunaga, and M. Kawai, “Clinical survey of muscular dystrophy in hospitals of national hospital organization,” IRYO, Vol.60, No.2, pp. 112-118, 2006 (in Japanese).

5. L. D. Lowry, “Artificial larynges: A review and development of a prototype self-contained intra-oral artificial larynx,” Laryngoscope, Vol.91, pp. 1332-1355, 1981.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3