Discrimination of Plant Structures in 3D Point Cloud Through Back-Projection of Labels Derived from 2D Semantic Segmentation

Author:

Imabuchi Takashi1, ,Kawabata Kuniaki1ORCID

Affiliation:

1. Spatial Information Creation and Control System Group, Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), 1-22 Nakamaru, Yamadaoka, Naraha-machi, Futaba-gun, Fukushima 979-0513, Japan

Abstract

In the decommissioning of the Fukushima Daiichi Nuclear Power Station, radiation dose calculations necessitate a 3D model of the workspace are performed to determine suitable measures for reducing exposure. However, the construction of a 3D model from a 3D point cloud is a costly endeavor. To separate the geometrical shape regions on 3D point cloud, we are developing a structure discrimination method using 3D and 2D deep learning to contribute to the advancement of 3D modeling automation technology. In this paper, we present a method for transferring and fusing labels to handle 2D prediction labels in 3D space. We propose an exhaustive label fusion method designed for plant facilities with intricate structures. Through evaluation on a mock-up plant dataset, we confirmed the method’s effective performance.

Publisher

Fuji Technology Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3