Vision-Based Finger Tapping Detection Without Fingertip Observation

Author:

Narita Shotaro, ,Kagami Shingo,Hashimoto Koichi

Abstract

A machine learning approach is investigated in this study to detect a finger tapping on a handheld surface, where the movement of the surface is observed visually; however, the tapping finger is not directly visible. A feature vector extracted from consecutive frames captured by a high-speed camera that observes a surface patch is input to a convolutional neural network to provide a prediction label indicating whether the surface is tapped within the sequence of consecutive frames (“tap”), the surface is still (“still”), or the surface is moved by hand (“move”). Receiver operating characteristics analysis on a binary discrimination of “tap” from the other two labels shows that true positive rates exceeding 97% are achieved when the false positive rate is fixed at 3%, although the generalization performance against different tapped objects or different ways of tapping is not satisfactory. An informal test where a heuristic post-processing filter is introduced suggests that the use of temporal history information should be considered for further improvements.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3